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Abstract

Memory Protection Keys for Userspace (PKU) is a recent
hardware feature that allows programs to assign virtual
memory pages to protection domains, and to change do-
main access permissions using inexpensive, unprivileged in-
structions. Several in-process memory isolation approaches
leverage this feature to prevent untrusted code from access-
ing sensitive program state and data. Typically, PKU-based
isolation schemes need to be used in conjunction with miti-
gations such as CFI because untrusted code, when compro-
mised, can otherwise bypass the PKU access permissions
using unprivileged instructions or operating system APIs.
Recently, researchers proposed fully self-contained PKU-

based memory isolation schemes that do not rely on other
mitigations. These systems use exploit-proof call gates to
transfer control between trusted and untrusted code, as well
as a sandbox that prevents tampering with the PKU infras-
tructure from untrusted code.
In this paper, we show that these solutions are not com-

plete. We first develop two proof-of-concept attacks against
a state-of-the-art PKU-based memory isolation scheme. We
then presentCerberus, a PKU-based sandboxing framework
that can overcome limitations of existing sandboxes. We ap-
ply Cerberus to several memory isolation schemes, and
show that it is practical, efficient, and secure.

CCS Concepts: • Security and privacy → Software and

application security; Systems security.
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1 Introduction

Many computer programs contain untrusted components
that must be isolated from trusted components to guarantee
the confidentiality and integrity of sensitive program state
or data. Modern operating systems provide the necessary
isolation only at the process boundary. This forces software
developers to run components as separate processes (some-
times referred to as compartments) that each have their own
virtual address space. One of the drawbacks of process-level
compartmentalization is that synchronous interaction be-
tween isolated components incurs high performance over-
head due to the expensive context-switching required for
inter-process communication. The research community has,
therefore, proposed several alternative forms of compart-
mentalization that have better performance characteristics
and are often more practical to apply to existing programs.
The core idea behind many of these techniques is to isolate
untrusted components in-process, thereby allowing them to
share typical per-process resources with the rest of the pro-
gram. Some of these techniques introduced new OS abstrac-
tions to set up thread-local address spaces using standard
memory management units [12, 20, 38, 51], whereas others
leveraged hardware virtualization support [36, 45, 53, 61, 81],
ARM memory domains [69], Memory Protection Keys for
Userspace (PKU) [19, 33, 34, 36, 45, 48, 63, 69, 70], Supervi-
sor Mode Access Prevention (SMAP) [81], or custom hard-
ware [65] to enable more granular compartmentalization.

Memory Protection Keys for Userspace (PKU) is a hard-
ware feature that is available on recent Intel and AMD server
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and desktop CPUs [22]. PKU allows programs to be compart-
mentalized by assigning memory pages to memory protec-
tion domains whose access permissions can be set individ-
ually by modifying the content of the PKU control register
(PKRU). PKU exposes a set of unprivileged instructions to read
and modify said register. This allows a program to quickly
disable access to all compartments that must be isolated from
the currently executing compartment, without having to pay
the high cost of the system calls and TLB invalidations re-
quired to change page permissions through conventional
means. However, an attacker can exploit vulnerabilities, hi-
jack the control-flow of a program, and abuse PKRU-updating
instructions to modify PKRU, enabling access to any compart-
ment’s memory.

Recently, researchers proposed ERIM [70] and Hodor [36],
two efficient PKU-based memory isolation schemes that iso-
late an application’s trusted from its untrusted components
by placing them in different memory protection domains.
Both systems have built-in sandboxes that prevent adver-
saries from bypassing the isolation scheme by executing
unsafe instructions that modify the PKRU register. Similar to
previous work, we refer to these sandboxes as PKU-based
sandboxes [21]. Unfortunately, these sandbox implementa-
tions have known security and usability problems. ERIM,
for example, relies on static binary instrumentation (SBI) to
neutralize any unsafe instructions in the protected program.
However, as SBI cannot reliably distinguish code from data,
ERIM could leave some unsafe instructions untouched [82].
Currently, ERIM’s sandbox also marks pages that contain
unsafe instructions as non-executable, which could lead to
usability issues [70]. Hodor’s sandbox uses hardware break-
points to ensure the program cannot execute unsafe instruc-
tions. This approach does not rely on SBI like ERIM’s, but
both systems can still be bypassed using the kernel as a
confused deputy [21].

In addition to the aforementioned problems, we discovered
two more security flaws in the design of Hodor’s sandbox
and exploit these flaws in new proof-of-concept attacks that
we present in this paper. We then design and implement
Cerberus1, a new PKU-based sandboxing framework that
can protect PKU-based memory isolation schemes against
all known PKRU-tampering attacks (except for the signal con-
text attacks described in Section 4.2.7). We use Cerberus to
develop sandboxes for two existing isolation schemes and
evaluate the performance and security of the resulting sys-
tems. We conclude that Cerberus enables practical, efficient,
and secure PKU-based sandboxing.

In summary, our paper contributes the following:
• We identify new design flaws in Hodor’s PKU-based
sandbox, and develop two new proof-of-concept at-
tacks that exploit these flaws [36].

1Cerberus is available at https://github.com/ku-leuven-msec/The-
Cerberus-Project.

• We present Cerberus, a new PKU-based sandbox-
ing framework, and apply our framework to develop
sandboxes for two state-of-the-art PKU-based memory
isolation schemes: ERIM [70] and XOM-Switch [55].
The resulting sandboxes stop all known attacks (ex-
cept for the signal context attacks described in Sec-
tion 4.2.7), including the new attacks we present in
this paper [21, 36, 70].

• We perform an extensive evaluation of the constructed
sandboxes on real-world server applications and show
that Cerberus enables practical, efficient, and secure
PKU-based sandboxing.

2 Background

PKU utilizes a new user-mode register (PKRU) to control
access rights2 to memory pages that are tagged with one of
16 available protection keys. The PKRU register is 32 bits wide
and has two bits (access disable and write disable) for each
key. These bits are checked during memory accesses for all
the pages that are associated with a key. The OS provides new
system calls, pkey_alloc and pkey_free, to allocate and
free protection keys respectively. A process can tag a page
with a key by using the new pkey_mprotect system call,
and access the PKRU register with unprivileged instructions;
rdpkru for read and wrpkru for write accesses. The xrstor
instruction can also update the PKRU register if bit 9 in the
eax register is set prior to the instruction execution.

2.1 PKU-based Memory Isolation Schemes

Some memory isolation schemes leverage PKU to isolate
trusted from untrusted components [33, 39, 40, 48, 63]. These
systems typically tag memory pages containing trusted code
and data with a different protection key than pages con-
taining untrusted code, thereby placing them in different
memory protection domains. Trusted code is then allowed
to access both domains, whereas untrusted code can only
access the untrusted domain. Furthermore, researchers have
used PKU to harden JavaScript engines [59], reinforce other
exploit mitigations [17, 19, 34, 45], and provide software
abstractions for isolation and sandboxing [58].

PKU can also be used to implement eXecute-OnlyMemory
(XOM). XOM is an effective mitigation against advanced
code-reuse attacks that rely on reading code [11, 68]. Recent
Linux kernels support XOM through an enhanced version of
the mprotect system call. If a user-space program uses this
system call to mark pages as PROT_EXEC only, the kernel will
assign said pages to a memory domain that has read access
disabled and it will update the PKRU register accordingly.
XOM support is not yet available in mainstream C libraries
and compilers, but can be enabled using XOM-Switch [55].
XOM-Switch’s patched dynamic linker and libc mark all

2The PKRU register only controls data accesses, instruction fetches are not
similarly restricted.

https://github.com/ku-leuven-msec/The-Cerberus-Project
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Figure 1. The goal of a PKU-based sandbox is to prevent
an attacker that has seized control of U’s execution from
accessing MT, while permitting legitimate memory accesses
from U to MU and from T to both MT and MU.

pages containing executable code as execute-only using the
aforementioned system call.

XOM can easily be bypassed unless it is used alongsidemit-
igations such as CFI. Without CFI, attackers can hijack con-
trol flow and disable XOM. XOM-Switch’s authors acknowl-
edged this limitation, and proposed to use Intel’s Control-
flow Enforcement Technology (CET) [2], a recent feature of
Intel CPUs, as an effective CFI mechanism. CET enforces
hardware-assisted CFI policies using a shadow stack and
indirect branch tracking. We show, however, that we can use
a PKU-based sandbox instead of CFI to harden XOM-Switch
in Section 6.1.2.

2.2 ERIM and Hodor

One major challenge for PKU-based systems is to prevent
attackers from tampering with the PKRU register by exploit-
ing a memory vulnerability in the untrusted code and by
subsequently locating and executing a PKRU-modifying in-
struction. One way to prevent such attacks is to apply exploit
mitigations to the untrusted code [6, 16, 47]. However, these
mitigations can introduce non-trivial run-time overheads,
and often cannot fully prevent PKRU tampering [1, 16].
Hodor and ERIM are PKU-based isolation systems that

do not rely on such mitigations [36, 70]. Both approaches
use two memory domains, MT and MU, that contain trusted
and untrusted components respectively. Transferring control
from trusted components to untrusted components or vice
versa happens via well-defined, exploit-proof instruction
sequences also known as call gates. In addition, Hodor and
ERIM each use a sandbox to prevent attackers that manage
to compromise an untrusted component from accessing MT
by abusing PKRU-modifying instructions (wrpkru, xrstor)
or system calls like pkey_mprotect as depicted in Figure 1.

2.2.1 A Closer Look at ERIM. ERIM compartmentalizes
applications into a trusted and untrusted domain. It assumes
the trusted components T are not exploitable, but does not
make any assumptions about the untrusted components U.

ERIM uses call gates to switch between the two domains.
Call gates use so-called safe instructions (see Listing 1). Safe
wrpkru instructions are those that are immediately followed
by either instructions to validate PKRU’s state at run time
(lines 12 to 17), ensuring that MT is locked by PKRU, or by a
jump to T (lines 4 and 5). Safe xrstor instructions, on the
other hand, are immediately followed by instructions that
check if bit 9 of eax is set. If one of these run-time validations
fails, the control-flow jumps to an instruction sequence that
terminates the application. Otherwise, the program execu-
tion continues. We refer to any other wrpkru and xrstor
instructions as unsafe instructions, as was done in previous
work [21]. ERIM’s call gates are not exploitable, since they do
not contain unsafe instructions. However, an attacker that
controls U could abuse unsafe instructions found outside
call gates to change PKRU, thereby allowing U to access MT.
Attackers can easily find unsafe instructions because (a) they
could appear as operands of other instructions, and (b) x86
instructions do not have a fixed size and the CPU, therefore,
allows programs to execute instruction operands as if they
were regular instructions themselves.

At startup time, ERIM’s PKU-based sandbox scans all exe-
cutable pages of the protected application using the /proc/-
self/mem interface to verify the absence of exploitable un-
safe instructions in MU pages. Any executable page that
contains unsafe instructions is marked as non-executable.
Consequently, any attempt to execute code from such a page
will trigger a fault that is handled by ERIM’s sandbox, and
the sandbox terminates the program prematurely. To prevent
this, ERIM first uses a static binary rewriter to replace instruc-
tion sequences that contain unsafe wrpkrus and xrstors by
functionally equivalent sequences that do not contain such
unsafe occurrences. At run time, the sandbox intercepts and
monitors mmap, mprotect, and pkey_mprotect system calls
from U that can introduce unsafe instructions or allow access
to MT. ERIM provides two sandbox implementations: one
version that is based on ptrace [2], and a more efficient one
that requires minor kernel modifications.

1 xor ecx , ecx

2 xor edx , edx

3 mov TRUSTED_PERM , eax

4 wrpkru // copies eax to PKRU

5 // Jump to trusted code

6
7 // Execute trusted code

8
9 xor ecx , ecx

10 xor edx , edx

11 mov UNTRUSTED_PERM , eax

12 wrpkru // copies eax to PKRU

13 cmp UNTRUSTED_PERM , eax

14 je continue

15
16 syscall exit // terminate program

17 continue:

18 // control returns to untrusted code

Listing 1. ERIM’s call gate.
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2.2.2 A Closer Look at Hodor. Hodor uses a trusted ap-
plication loader to partition applications into trusted and
untrusted libraries. Hodor’s loader ensures that untrusted
libraries U can only interact with trusted libraries T through
call gates similar to ERIM’s. Hodor’s PKU-based sandbox
monitors the application at run time to stop an attacker from
abusing unsafe wrpkru instructions that change PKRU. When
an application attempts to mark a page as executable, the
trusted loader first scans the page for unsafe wrpkru instruc-
tions, and marks the page as non-executable if it contains
unsafe instructions. Attempts to execute code from such a
page trigger a fault. Upon receiving that fault, Hodor’s mod-
ified OS kernel attempts to put hardware breakpoints on
all unsafe instructions on the same page, and it marks the
page as executable. If the page contains more unsafe wrpkru
instructions than the maximum number of hardware break-
points the CPU supports, Hodor will single-step through the
page instead [2]. This mechanism ensures that all unsafe
wrpkru instructions will be vetted by Hodor’s kernel. When
a hardware breakpoint is triggered, Hodor’s modified ker-
nel terminates the program execution. Hodor can reclaim
hardware breakpoint slots in the debug registers if and when
necessary. However, when doing so, it will always mark the
pages these breakpoints point to as non-executable.

3 Threat Model

For this paper, we make the following assumptions about the
host system, the targeted application, and the attacker. Our
assumptions are in line with work in the area [21, 36, 70]:

• Host System. We assume Protection Keys for
Userspace (PKU) [22] to be available on the target
platform and we trust its implementation. The kernel
is also considered part of the Trusted Computing Base
(TCB).

• Targeted Application.We do not make any assump-
tions about the untrusted code U, but similar to previ-
ous work [21, 36, 70], we assume that the initial state
of the targeted application is not compromised, and
that the PKU-based sandbox is initialized correctly.
The trusted code T of the application, however, is con-
sidered free of exploitable bugs. We also assume for
simplicity that there are only two levels of trust (T and
U), and that the application is not using PKU for any
purposes, except for memory isolation.

• Attacker. We consider an attacker that controls U
of the targeted application with the goal to access
MT. For example, an adversary can use code-reuse
and control-flow hijacking attacks to exploit unsafe
instructions in executable pages of MU to tamper with
PKRU’s state, enabling access to MT. Mitigations like
software diversity [47] and CFI [6, 16] raise the bar
for such attacks, but we do not rely on such defenses.
Attacks that target the underlying hardware such as

transient execution [32, 43, 50] and remote-fault injec-
tion [13, 41, 66, 71] are considered out of scope for this
paper.

4 Challenges

ERIM andHodor have built-in sandboxes to prevent attackers
that control U from accessing MT by any means. However,
there are several security and usability challenges associated
with PKU-based sandboxing [21, 36, 70]. We describe these
issues below, introduce two new attacks against Hodor, and
also discuss potential solutions.

4.1 Handling of unsafe instructions

Executable pages can contain unsafe instructions either be-
cause they were put there intentionally by the programmer,
or because they are embedded into other instructions (e.g., as
an instruction operand). Attackers can exploit these unsafe
instructions to tamper with PKRU’s state. ERIM and Hodor
eliminate or detect unsafe instructions to block such attacks.
We show, however, that the proposed techniques to handle
unsafe instructions are incomplete.

First, Hodor’s sandbox ensures that unsafe wrpkru instruc-
tions are vetted by its modified kernel, leveraging hardware
breakpoints and single-step execution. We carefully exam-
ined the open-source implementation of Hodor3 and discov-
ered that it does not monitor unsafe xrstor instructions.
Therefore, an attacker that controls U can abuse these unsafe
xrstor instructions to unlock MT.

ERIM, on the other hand, relies on SBI to neutralize un-
safe wrpkru and xrstor instructions. In addition, ERIM’s
sandbox inspects the program at run time to ensure no new
unsafe instructions are introduced in the executable pages of
MU. If U tries to map a page that contains unsafe instructions,
it is marked as non-executable by ERIM’s sandbox to stop
attackers from exploiting them. We used the open-source im-
plementation of ERIM4, repeated the experiments described
in the original paper [70], and verified that ERIM’s approach
works for the tested system (Debian 8, Linux 4.9.60) and
applications.
However, we could not replicate the experiments on a

recent system (Ubuntu 18.04, Linux 5.3.18), where ERIM
failed to eliminate unsafe instructions in binaries such as
ld.so, libc.so, and libm.so, either due to SBI’s inability
to distinguish code from data [82] or due to gaps in ERIM’s
rewriting rules. Reames showed that constructing a complete
set of rewriting rules is a difficult problem [3].
ERIM’s sandbox marks pages containing unsafe instruc-

tions as non-executable. On recent systems, part of the
code of the aforementioned libraries therefore becomes non-
executable, which leads even trivial compartmentalized pro-
grams to terminate early. We could modify the sandbox to

3https://github.com/hedayati/hodor
4https://github.com/vahldiek/erim
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not mark these pages as non-executable, but this would lead
to security issues, since an attacker that controls U can ex-
ploit unsafe instructions from these pages.

Proposed Solution: Cerberus (optionally) uses ERIM’s
binary rewriter to eliminate unsafe instructions, if possi-
ble. In addition, Cerberus implements Hodor’s vetting
scheme in user space to vet the remaining unsafe instruc-
tions, and extends it to also deal with unsafe xrstor in-
structions (see Section 5.2).

4.2 PKU Pitfalls

Conor et al. [21] developed proof-of-concept exploits against
ERIM and Hodor that bypass their PKU-based sandboxes.
These attacks use the kernel as a confused deputy, taking
advantage of OS abstractions that are agnostic of PKU-based
memory isolation schemes.

4.2.1 Inconsistencies of PT and PKU permissions.

The OS exposes system calls that do not respect the en-
forced page table (PT) and PKU permissions. An attacker can
use process_vm_readv, process_vm_writev, and ptrace
system calls to directly access MT from U. PKU-based sand-
boxes should intercept and monitor these system calls to pre-
vent such accesses. This introduces negligible performance
overhead, since these calls are rarely used, as shown in pre-
vious work [21].

Another method to circumvent enforced page table and
PKU permissions is to use the procfs interface. A process
can open the /proc/self/mem file, which mirrors the pro-
cess’ virtual address space, and perform I/O operations on
it. By design these operations ignore page table and PKU
permissions, allowing an attacker to directly access MT from
U, or modify non-writable code to tamper with PKRU’s state.
PKU-based sandboxes should at least intercept and monitor
open-like system calls to prevent such attacks. However, it is
shown that this adds huge overhead, unless an efficient sys-
tem call interception and monitoring mechanism is used [21].

Proposed Solution: Cerberus intercepts and monitors
process_vm_readv, process_vm_writev, and ptrace
system calls similar to previous work [21]. Cerberus
also uses a minimal in-kernel syscall agent that efficiently
intercepts open-like calls, and denies opening of /proc/-
self/mem file (see Section 5.2).

4.2.2 Mappings with mutable backings.

More problems arise when mapped memory is backed by
a mutable file. An attacker can perform direct I/O operations
on this file to modify it, regardless of the page table and PKU
permissions of the mappings that are backed by it. These
modifications are reflected to the corresponding mappings.
The OS also allows multiple mappings of the same shared
memory with different page permissions that refer to the

same physical memory region. Therefore, an attacker can
modify an immutable and executable mapping through an-
other writable mapping of the same shared memory. In both
mentioned cases, the attacker can add unsafe instructions to
executable pages without being detected by the PKU-based
sandbox.

Proposed Solution: Cerberus ensures that there are no
file-backed mappings, and also imposes restrictions on
mapped regions (see Section 5.2).

4.2.3 Changing code by relocation.

Attackers can also introduce unsafe instructions without
modifying executable pages of MU. First, they can allocate
two non-adjacent memory pages that each contain part of
an unsafe instruction at the page boundary. The PKU-based
sandbox scans these pages for unsafe instructions and con-
siders both pages safe since they do not contain complete
unsafe instructions. Attackers can then use the mremap sys-
tem call to move and join the two pages, thereby forming an
unsafe instruction at the page boundary between the two
pages. To stop this attack, the sandbox should re-scan the
page boundaries for unsafe instructions after every reloca-
tion [21].

Proposed Solution: Cerberus intercepts and monitors
mremap system call similar to previous work [21].

4.2.4 Influencing intra-process behavior with sec-

comp.

ERIM and Hodor use the new pkey_mprotect system call
to isolate MT from U. The trusted code T allocates a dedicated
memory region (MT) to store secrets such as encryption keys,
and uses pkey_mprotect to associate it with a different pro-
tection domain than U. However, a malicious seccomp filter
can deny these calls and return a success value, tricking T
into storing sensitive data in memory that is not properly
isolated from U. A sandbox can prevent this attack by inter-
cepting and restricting prctl and seccomp system calls [21].

Proposed Solution: Cerberus intercepts and monitors
prctl and seccomp system calls similar to previous
work [21].

4.2.5 Modifying trusted mappings.

Attackers can also change the virtual address space to
access isolated memory or modify T. For example, an ad-
versary can invoke a pkey_mprotect system call to modify
the protection key that a page of MT is tagged with. Hodor
prevents such attacks by passing the addresses of T and MT
to the kernel, and denying any attempt to change them from
U [36].
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Figure 2. An attacker can abuse the mremap system call to
relocate unsafe instructions, nullifying instruction vetting
based on previously assigned hardware breakpoints.

Figure 3. An attacker can use Thread 1 to introduce new
unsafe instructions, and abuse them from Thread 2, since
hardware breakpoints are thread-local.

Proposed Solution: Cerberus forbids pkey_mprotect
system call from U (see Section 5.2).

4.2.6 Race conditions in scanning.

PKU-based sandboxes scan executable pages for unsafe
instructions. An attacker that controls multiple threads can
exploit TOCTTOU race conditions in the memory scanning
process to bypass these sandboxes and add unsafe instruc-
tions to executable memory. To protect against such attacks,
the sandbox should initially mark the page as non-writable
and non-executable, scan it, and then mark it as executable
only if it does not contain unsafe instructions [21].

Similarly, ERIM assigns newly allocated pages to the same
domain they were allocated from. However, because of race
conditions in ERIM’s ptrace-based sandbox, attackers that
seize control of U can trick the sandbox into marking un-
trusted pages as trusted.

Proposed Solution: Cerberus spawns a unique mon-
itor thread for every application thread, and properly
synchronizes the operations that are necessary to deter-
mine whether the program is currently executing code
in U or T (see Sections 5.2, 5.3 and 6.1).

4.2.7 Signal context attacks.

Conor et al. [21] showed that an adversary can abuse sig-
nals to modify PKRU’s state without using wrpkru or xrstor
instructions. The CPU state, including the PKRU register, is
exposed both during the return from a signal handler and dur-
ing signal delivery. For example, an attacker can craft a CPU
state on the stack, and use sigreturn system call to restore
an arbitrary value to the PKRU. Conor et al. [21] also showed
that it is hard to secure signal handling in multi-threaded
applications, since attackers can use the sigaltstack sys-
tem call to define the signal stack context and exploit race
conditions during signal delivery.

Proposed Solution: Cerberus does not currently pro-
tect against signal context attacks. We discuss ways of
extending Cerberus to block such attacks in Section 8.

4.3 New PKU Pitfalls

We examined Hodor’s open-source implementation and
developed two new proof-of-concept attacks that bypass
Hodor’s memory isolation scheme and are not stopped by its
sandbox. Our attacks specifically target Hodor’s instruction
vetting mechanism that uses debug registers to monitor un-
safe instructions. However, they can be generalized to target
other PKU-based sandboxes that use hardware breakpoints
to vet unsafe instructions.

4.3.1 Vetted unsafe instruction relocation.

Hodor’s modified kernel uses the CPU’s debug register to
put hardware breakpoints on unsafe instructions and termi-
nates the program if it triggers such a breakpoint. However,
Hodor’s sandbox does not intercept the mremap system call
and, therefore, fails to update breakpoint addresses when
the program relocates executable pages as depicted in Fig-
ure 2. This is a different attack than the one described
in Section 4.2.3, and requires additional measures.

Proposed Solution: Cerberus intercepts mremap sys-
tem call, and ensures that debug registers are properly
updated when a process relocates code.

4.3.2 Incomplete debug register update.

The debug registers Hodor uses for hardware breakpoints
are part of the thread context. Hardware breakpoints are,
therefore, inherently thread-local. Unfortunately, Hodor only
sets breakpoints in the local thread context when it discovers
a new unsafe instructions, and does not propagate updated
hardware breakpoints to other threads. As a result, an at-
tacker can use one thread to introduce unsafe instructions,
and abuse them from another thread to tamper with PKRU’s
state and unlock MT to U as depicted in Figure 3.
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Proposed Solution: Cerberus augments hardware
breakpoints with instruction emulation to vet unsafe in-
structions in multi-threaded programs (see Section 5.2).

5 Design

With the aforementioned challenges in mind, we designed
and implemented Cerberus, a general framework that de-
velopers can use to build PKU-based sandboxes. Our goals
for Cerberus’ design were:

Goal 1: Cerberus should provide the basic components
that are necessary to build PKU-based sandboxes.
Goal 2: Cerberus should offer abstractions that allow
developers to extend these components.
Goal 3: Cerberus should implement user-space instruc-
tion vetting techniques similar to Hodor’s. These tech-
niques will allow Cerberus to defend against attacks that
bypass the sandbox.
Goal 4: Cerberus should eliminate as many unsafe in-
structions as possible from the protected program ahead
of time. Doing so will ease pressure on the processor’s
debug registers and improve the performance of the in-
struction vetting mechanism.
Goal 5: Cerberus should, at all times, be able to deter-
mine whether the program is currently executing code
in U or T, and be able to determine which memory pages
are trusted or untrusted. This is necessary to prevent
TOCTTOU attacks, as described in Section 4.2.6.
Goal 6: Cerberus should monitor system calls that can
be used to bypass the sandbox (see Sections 4.2.1, 4.2.3,
4.2.4, 4.2.5, 4.2.7, and 4.3.1), but avoid monitoring fre-
quently executed system calls because doing so could
substantially reduce the protected application’s perfor-
mance.

5.1 Cerberus’ Components

Cerberus contains the following components:
1. Cerberus Monitor. A ptrace-based monitor that

intercepts and monitors system calls. This component
is the core of the to-be-produced PKU-based sandbox.

2. Syscall Agent. Aminimal in-kernel syscall agent that
forwards only the system calls from a configurable list
(SList) to the Cerberus monitor, while letting the
rest to execute without monitoring. The syscall agent
also restricts opening of files from a configurable file
list (IList).

3. Cerberus Loader. A custom application loader that
initializes the syscall agent, and injects a special code
page containing a single rdpkru instruction into the
protected application.

4. Cerberus APIs. A rich set of generic macros and
functions that developers can use to extend the

Cerberus monitor and loader to implement PKU-
based sandboxes.

5. Binary Rewriter. An SBI tool to eliminate as many
unsafe instructions as possible from the protected ap-
plication ahead of time. Currently, we use ERIM’s SBI
tool to rewrite binaries [70].

Cerberus decouples the development of PKU-based sand-
boxes from the development of the underlying PKU-based
memory isolation scheme. The first (optional) step of the
development workflow is to eliminate a portion of the un-
safe instructions that are present in the to-be-sandboxed
application with the binary rewriter. We rewrite the applica-
tion binary, system libraries and other dependencies. Then,
the developer uses the Cerberus APIs to extend the default
implementations of the Cerberus monitor and loader to
build PKU-based sandboxes, tailored to the needs of a partic-
ular PKU-based memory isolation scheme. Each produced
PKU-based sandbox consists of a modified loader, a modi-
fied monitor, and the syscall agent. Figure 4 shows the full
development workflow.

Note that Cerberus does not modify the syscall

agent. The same syscall agent implementation

is used across different sandboxes created with

Cerberus. Our framework only provides inter-

faces to change how the loader and the monitor in-

teract with the syscall agent (see Sections 5.2, 5.3

and 6.1).

5.2 Basic PKU-based Sandbox

Cerberus provides default implementations of its monitor
and loader. Along with the syscall agent, these two com-
ponents form a basic PKU-based sandbox. We describe the
components and their interactions below, and show how
a sandbox developer can use the Cerberus APIs to extend
these components and produce PKU-based sandboxes that
overcome the challenges described in Section 4.

Initialization. The Cerberus monitor injects the
Cerberus loader into the application before launching it.
Upon startup, theCerberus loader maps a special executable
and non-writable page containing a rdpkru instruction into
the application’s address space. We use this instruction to im-
plement an interface for a ptrace-based monitor to read the
PKRU register (see Section 5.3). The Cerberus monitor en-
sures that the application cannot unmap the page or change
its access permissions. Then, the Cerberus loader initializes
the syscall agent through a prctl option that we added to
the kernel, providing a list of system calls that must be mon-
itored (SList) and a list containing the inode numbers of
sensitive files the application is not allowed to access (IList).
Both lists are easily configurable through the CerberusAPIs
(see Section 5.3).
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Figure 4. The developer (optionally) uses the binary rewriter to eliminate as many unsafe instructions as possible from the
applications. We represent the eliminated unsafe instructions with strike-through text in the rewritten application. Next, the
developer uses the Cerberus APIs to extend the Cerberus loader and monitor. The produced PKU-based sandbox consists of
the modified loader, the modified monitor and the syscall agent.

System call interception andmonitoring.At run time,
the syscall agent forwards the system calls included in SList
to the Cerberus monitor. System calls that are not in the
list can be executed without monitoring. The agent also
intercepts open-like calls directly in kernel space and denies
the application’s requests to open sensitive files. By referring
to sensitive files using their inode number, our agent can also
block access to hard or symbolic links that refer to sensitive
files.

The Cerberusmonitor also ensures that the syscall agent
is only initialized once after execve or fork/clone-like
system calls. Currently, IList only contains the inode
of /proc/self/mem to protect against attackers that aim
to abuse these files to bypass memory isolation (see Sec-
tion 4.2.1). Blocking opening of sensitive files can also be
directly implemented in a ptrace-based monitor like the
Cerberus monitor, but it would add substantial run-time
overhead, as shown in previous work [21].

TheCerberusmonitor intercepts andmonitors the follow-
ing system calls: modify_ldt, prctl, seccomp, ptrace, pro-
cess_vm_readv, process_vm_writev, mprotect, pkey_-
mprotect, pkey_alloc, pkey_free, mmap, munmap, mremap,
execve, shmat, shmdt, and all variants of the fork/clone
system.

Whenever the Cerberus monitor needs to determine if
the program is currently executing code in U or T, it tem-
porarily moves the program’s instruction pointer to the rdp-
kru instruction on the special page mapped by the loader.
The monitor then forces the application to execute this single
instruction, reads the PKRU value from the application’s reg-
ister context, and then restores the original register context.
We implemented this mechanism because the ptrace API
currently does not offer any options to read the contents
of the PKRU register directly, and because reading said con-
tents is necessary to prevent attacks such as those described
in Section 4.2.6.

The Cerberus monitor assumes that the appli-

cation always executes code in U. The developer

should use the Cerberus APIs to define the PKRU
values that correspond to U and T respectively,

and extend theCerberusmonitor (see Sections 5.3

and 6.1).

An attacker that controls U can use system calls to ac-
cess MT directly or to unlock it to U (see Sections 4.2.1,
4.2.4 and 4.2.5). To prevent such attacks, the Cerberus mon-
itor forbids the following system calls from U: modify_-
ldt, prctl setting seccomp, seccomp, ptrace, pkey_alloc,
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pkey_free, pkey_mprotect, shmat and shmdt. It also re-
jects process_vm_readv and process_vm_writev system
calls that attempt to access MT from U.

The Cerberus monitor does not implement a

mechanism to reliably track pages which are inMT.

Consequently, MT is empty by default. The devel-

oper should use the CerberusAPIs to build such a

mechanism (see Sections 5.3 and 6.1).

Handling of unsafe instructions. The Cerberus mon-
itor scans all executable pages U loads into the address space
at run time for unsafe instructions. To do so, it intercepts
and monitors mmap, mremap and mprotect system calls from
U as these calls could introduce unsafe instructions. We im-
plemented a modified version of Hodor’s instruction vetting
scheme in user space using ptrace to deal with the discov-
ered unsafe instructions. Unlike Hodor, however, our scheme
vets both unsafe wrpkru and xrstor instructions. In addition,
Hodor’s sandbox always terminates execution whenever a
hardware breakpoint is triggered, while our monitor allows
execution of unsafe xrstor instructions to continue if bit 9
of the eax register is not set. If the bit is set, we terminate
the program. The monitor also implements techniques de-
scribed in Sections 4.2.3 and 4.3.1 to deal with attacks that
use code relocation to introduce unsafe instructions. Elim-
inating unsafe instructions using binary rewriting reduces
debug register pressure and, thus, decreases the likelihood
that we have to resort to single-step execution when a page
contains more unsafe instructions than the number of debug
registers (see Section 2.2.2).

The Cerberus monitor considers all wrpkru and

xrstor instructions as unsafe, except those in-

cluded in a configurable list (AllowList). The Al-
lowList is empty by default. The developer should

use the Cerberus APIs to modify the AllowList
(see Sections 5.3 and 6.1).

Dealingwith dangerousmappings. Similar to previous
work [21], theCerberusmonitor enforcesW∧X by intercept-
ing and monitoring system calls that map pages or change
page permissions, since Linux, by default, allows pages that
are both writable and executable. Moreover, the Cerberus
monitor does not allow executable mappings that are MAP_-
SHARED or MAP_SHARED_VALIDATE to protect against attack-
ers that try to modify an immutable mapping via another mu-
table mapping of the same shared memory (see Section 4.2.2).

Dealing with attacks that try to directly modify the under-
lying object of a file-backed mapping is more complicated,
though. First, the Cerberus monitor intercepts system calls
that map memory (e.g., mmap) and replaces the file-backed
mappings, with MAP_ANONYMOUS ones, ensuring there are
no mappings that are backed by a file. Then the Cerberus
monitor copies the file contents that the application initially

attempted to map to the mapped region. To prevent attacks
through memory pages with mutable backing files (see Sec-
tion 4.2.2), the Cerberus monitor imposes restrictions on
mapped regions. For example, we reject any attempt to map
pages that are simultaneously MAP_SHARED and executable.
Although we did not observe any compatibility or usability
issues that arose from these restrictions, we discuss their
potential implications in Section 8.

Protecting multi-threaded programs. Protecting
multi-threaded programs is challenging because hardware
breakpoints are only set in the thread-local register context
and because malicious threads could attempt to modify
executable code while it is being scanned for unsafe
instructions. This opens new possibilities for attacks that
would not be possible in single-threaded programs, as we
explain in Sections 4.2.6 and 4.3.2. To counter these threats,
we spawn a unique Cerberus monitor object and thread
for every application thread we protect. The Cerberus
monitors that supervise threads of the same process share
data structures and always enter a critical section when
they scan the application memory for unsafe instructions.
The Cerberus monitors must enter the same critical section
when an application thread attempts to execute a system
call that could change the contents of any of the pages that
are being scanned (e.g., mremap). This design avoids the
problem of race conditions during memory scanning.

Secondly, whenever a process spawns a thread for the first
time (i.e., when the program transitions from single-threaded
to multi-threaded execution), the Cerberus monitors stop
relying solely on hardware breakpoints for instruction vet-
ting, since updates to the set of breakpoints would not prop-
agate beyond the currently executing thread as described
in Section 4.3.2. Instead, the Cerberus monitors only use
hardware breakpoints to vet the unsafe instructions whose
addresses were stored in the debug registers at the moment
the process started to use multiple threads, whereas code
pages that contain unsafe instructions that are not protected
by debug registers are marked as non-executable. These
pages include those that were mapped as non-executable by
the Cerberus monitor before switching to multi-threaded
execution, as well as new pages mapped by the threads. At-
tempts to execute instructions from code pages that were
marked as non-executable by the Cerberus monitor trigger
a fault. When the Cerberus monitor is notified of faults on
one of these pages, which it can determine by inspecting the
instruction pointer, it does not terminate execution immedi-
ately. First, the Cerberus monitor checks if the instruction
that was about to get fetched is an unsafe instruction or
not. If it is an unsafe wrpkru instruction, the Cerberusmon-
itor terminates execution, while if it is an unsafe xrstor,
the Cerberus monitor terminates execution only if bit 9 of
register eax is set. Otherwise, the instruction is considered
safe and the Cerberus monitor uses an emulation engine
for x86 instructions (included in Cerberus) to emulate the
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instruction, essentially updating the program’s state to make
it seem like the instruction was actually executed.
At run time, the Cerberus monitor can decide if emu-

lation of instructions is necessary by detecting if multiple
threads are used. To do so, it intercepts system calls that cre-
ate and destroy threads, and checks the /proc/self/task
file. Even though emulating instructions in user space is slow,
we did not experience significant performance degradation
in our experiments that includedmulti-threaded applications,
since unsafe instructions are rare as described in previous
work [36, 70]. In addition, eliminating a portion of unsafe
instructions with SBI decreases the number of instructions
that should be emulated, since the monitor needs to mark
fewer code pages as non-executable. We provide details for
the emulation engine in Section 6, and we discuss alternative
ways to deal with multi-threaded applications in Section 8.

5.3 The Cerberus APIs

Cerberus provides a rich set of abstractions to facilitate
development of PKU-based sandboxes. We describe below
the most important abstractions below.

Configuration of the syscall agent.Developers can use
simple macros to modify the SList and IList the Cerberus
loader passes to the syscall agent. For example, we can add
a new system call to the SList by adding CERBERUS_MASK_-
SET(SYSCALL_NUMBER) in the Cerberus loader.

Definition ofU andT.Developers can use simplemacros
to define the values of PKRU that correspond to U and T
respectively. These macros are based on code from previous
work [36, 70].

Identification of the current executing domain.

Cerberus provides a ptrace-based interface to read PKRU’s
state, reliably identifying the currently executing domain.
We described the functionality of this interface in Section 5.2.

System call handling. Similar to previous work [76, 78],
Cerberus provides macros to insert hooks before and after
the execution of certain system calls. In addition, our frame-
work exports macros and functions for accessing registers
and memory, and a rich logging infrastructure. Developers
can use these abstractions to write system call handlers. For
example, developers can build a mechanism that maintains
a list of memory pages belonging to MT by writing handlers
for the pkey_mprotect and mprotect system calls (see Sec-
tion 6.1).

Modification of the AllowList. Developers can use
macros and functions to add instruction sequences that in-
clude wrpkru and xrstor to the AllowList. The Cerberus
monitor’s memory scanning considers these instruction
sequences safe. This allows us to recognize sequences
such as ERIM’s call gates. This code is based on previous
work [36, 70].

Emulation Engine. Cerberus exports macros and func-
tions to emulate x86 instructions. We use instruction emu-
lation to protect multi-threaded programs (see Section 5.2).

6 Implementation and Use Cases

Cerberus consists of an SBI tool, a monitor, a loader, a set
of APIs, and the syscall agent (see Figure 4). We used ERIM’s
binary rewriter as our SBI tool, and we implemented the
other Cerberus components on top of ReMon, a security-
oriented Multi-Variant Execution Environment (MVEE) [76].
The implementations of Cerberus’ monitor, loader, APIs,
and syscall agent comprise ≈1 KLOC, ≈650 LOC, ≈9.4 KLOC,
and ≈79 LOC of C/C++ code respectively. Along with ≈229
LOC in shell scripts, this gives us a total of ≈11 KLOC.
The Cerberus APIs include an extensible emulation en-

gine that currently supports 170 x86 instructions and that
comprises ≈2752 LOC of C/C++. We based its implementa-
tion on code written for a related project, making only minor
modifications [75]. We implemented our syscall agent as a
small kernel patch for Linux kernel 5.3.18.

6.1 Use Cases

We applied the development workflow described in Sec-
tion 5.1 to build PKU-based sandboxes for ERIM and XOM-
Switch.

6.1.1 Use Case 1 – A Sandbox for ERIM.

First, we defined the same PKRU values as ERIM for U and
T, and we also added ERIM’s call gates to the AllowList.
Second, we implemented a mechanism that tracks which
pages are in MT by intercepting pkey_mprotect system calls
from T. To do so, we used the Cerberus APIs to modify how
the Cerberus monitor handles the pkey_mprotect system
call. Specifically, the monitor identifies the current executing
domain by checking PKRU’s value, and if it corresponds to
T, it inspects pkey_mprotect’s arguments. ERIM’s T only
uses pkey_mprotect to tag pages of MT with T’s protection
key. Consequently, this mechanism reliably tracks pages
of MT. We did not have to make any other changes to the
basic PKU-based sandbox described in Section 5.2. Our total
implementation effort for this use case was limited to ≈55
LOC of C/C++ code.
Hodor’s memory isolation scheme is similar to ERIM’s.

Consequently, we would only have to make minor changes
(e.g., defining slightly different PKRU values for U and T) to
our ERIM sandbox to apply it to Hodor is well.

6.1.2 Use Case 2 – A Sandbox for XOM-Switch.

We also used Cerberus to build a sandbox for XOM-
Switch. To the best of our knowledge, this is the first PKU-
based sandbox for XOM-Switch. This sandbox prevents at-
tackers from abusing PKU to disable XOM, and thus, elim-
inates the requirement of an additional defense like CFI to
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ERIM-CPI ERIM-CPI with the ERIM-SS ERIM-SS with the

APP (No Sandbox) Cerberus Sandbox (No Sandbox) Cerberus Sandbox

nginx (1 worker) 6.54% 4.97% 0.57% 1.91%
nginx (2 workers) 5.72% 6.20% 4.62% 3.32%
nginx (3 workers) 1.55% 2.23% -1.22% 1.05%
lighttpd (1 worker) – – 0.16% 2.14%
lighttpd (2 workers) – – 0.22% 0.23%
lighttpd (3 workers) – – -0.01% -0.03%
geometric mean 3.87% 4.10% 0.71% 1.43%

Table 1.We isolated shadow stacks and safe regions in CPI/CPS with ERIM (ERIM-SS and ERIM-CPI respectively). Wemeasured
the overhead of standalone ERIM-SS and ERIM-CPI when they are not protected by a sandbox (no sandbox) compared to
the native execution. We report the overhead of ERIM-SS and ERIM-CPI with the Cerberus sandbox compared to the native
execution. The Cerberus sandbox here corresponds to the sandbox described in Section 6.1.1. – indicates that the experiment
failed. The standard deviation is below 1.75% in all cases.

protect XOM (see Section 2.1). We treated XOM-Switch as a
PKU-based memory isolation scheme, in which U includes all
the code. This is the default behavior of the basic PKU-based
sandbox, so a developer does not need to define the PKRU
values that correspond to U and T (see Section 5.2). Similarly,
we do not need to modify the AllowList, since XOM-Switch
does not rely on user space wrpkru instructions for inter-
domain transitions (see Section 2.1). Consequently, the sand-
box considers all wrpkru and xrstor unsafe (see Section 5.2).
We implemented a mechanism that tracks pages which are in
MT by intercepting mprotect system calls. Within our mpro-
tect handlers, we assign all execute-only pages to MT and
we block any further changes to an execute-only page’s per-
missions, thus blocking the attacks described in Section 4.2.5.
This effort took only ≈16 LOC of C/C++ code.

7 Evaluation

We evaluated the performance and the security of the PKU-
based sandboxes created with Cerberus.

7.1 Performance

We ran our experiments on an HP Z6 G4 workstation with
a 12-core Intel Xeon Silver 4214 CPU running at 2.20 GHz
and 64 GB of RAM (Turbo-Boost and Hyper-Threading were
disabled). The machine runs Ubuntu 18.04.6 LTS with ver-
sion 5.3.18 of the Linux kernel. We applied a minimal kernel
patch that implements the syscall agent. We evaluate the con-
structed PKU-based sandboxes on popular high performance
server applications: nginx, lighttpd and redis. We ran a
benchmarking client on a separate machine that is connected
to the workstation through a gigabit Ethernet connection.
The client machine has a 6-core Intel Core i7-8700K CPU
running at 3.70 GHz and 64 GB of RAM (Turbo-Boost and
Hyper-Threading were disabled). The client machine runs
Ubuntu 18.04.6 LTSwith version 5.4.0 of the Linux kernel. For
nginx and lighttpd, we used wrk benchmark to request a
4KB page for 10 seconds over 10 concurrent connections. For

redis, we used redis-benchmark, distributed with Redis,
with the default workload (100000 requests and 50 parallel
connections).
For the experiments described in Section 7.1.2, the client

communicates with the server over HTTPS, while for the
experiments described in Sections 7.1.1 and 7.1.3 communi-
cation happens over HTTP. We measured the throughput of
the server applications running under our defense relative
to the throughput of the native execution. We ran each ex-
periment 10 times, removed the highest and lowest values as
outliers, and reported the average of the 8 remaining values.
We configured lighttpd and nginx to use 1–3 workers, and
redis to use 1–3 I/O threads. The server applications can
saturate the network connection when configured with 3
workers (lighttpd, nginx) and 3 I/O threads (redis). As
a result, we did not try configurations with more than 3
workers and I/O threads.

The developed PKU-based sandboxes, described in Sec-
tion 6.1, identified unsafe instructions in nginx, redis,
ld.so, libm.so and libc.so during our experiments. We
eliminated a portion of unsafe instructions with ERIM’s SBI
tool. However, we could not neutralize all unsafe instruc-
tions with this tool. We did not investigate further the reason
that the tool failed, since the constructed sandboxes do not
solely rely on the SBI being successful in removing all unsafe
instructions.

7.1.1 Protecting safe regions in CPI/CPS and SS.

Similar to previous work [70], we used ERIM to isolate
safe regions of CPI/CPS [46]. We changed ≈13 LOC to fix
an LLVM bug and to port the CPI compiler of ERIM to our
testing environment (Ubuntu 18.04 with kernel 5.3.18). In
the same manner, we used ERIM to isolate the safe regions
of a shadow stack implementation (SS for short) [17]. To
do so, we added ≈38 LOC to the SS compiler passes to add
ERIM’s functionality. We refer to the above compiler passes
as ERIM-CPI and ERIM-SS respectively. We applied ERIM-
CPI to nginx and ERIM-SS to lighttpd and nginx. We could
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APP

ERIM-OpenSSL with the

Cerberus Sandbox

nginx (1 worker) 1.12%
nginx (2 workers) 0.66%
nginx (3 workers) 1.21%
lighttpd (1 worker) 0.44%
lighttpd (2 workers) 0.31%
lighttpd (3 workers) 0.49%
redis (1 I/O thread) -1.29%
redis (2 I/O threads) 1.34%
redis (3 I/O threads) 0.01%
geometric mean 0.47%

Table 2. We isolated OpenSSL keys in server applications
with ERIM (ERIM-OpenSSL). We report the overhead of
ERIM-OpenSSL with theCerberus sandbox compared to the
native execution. The Cerberus sandbox here corresponds
to the sandbox described in Section 6.1.1. The standard devi-
ation is below 2.67% in all cases.

not run lighttpd after applying ERIM-CPI to it because
of CPI’s imprecise handling of aliasing relations between
memory references.We also verified that lighttpd fails with
the original CPI compiler [46]. Similarly, we could not run
redis after applying either ERIM-CPI or ERIM-SS. Again,
we verified that redis also fails after compilation with the
original CPI [46] and SS [17] compiler. Consequently, we
concluded that it is not our code that is responsible for the
failures.
We show the overhead for each successful experiment

in Table 1. For the experiments, we removed ERIM’s sand-
box (no sandbox) or replaced it with the sandbox described
in Section 6.1.1 (Cerberus sandbox). For ERIM-CPI with
Cerberus sandbox we report overhead of 2.23–6.20% with
geometric mean of 4.10%, while for ERIM-SS with the
Cerberus sandbox we report overhead of -0.03–3.32% with
geometric mean of 1.43%. For standalone ERIM-CPI we re-
port overhead of 1.55–6.54% with geometric mean of 3.87%,
while for standalone ERIM-SS with we report overhead of
-1.22–4.62% with geometric mean of 0.71%. The results for
standalone ERIM-CPI and ERIM-SS are consistent with pre-
vious work [81]. We measured the overhead of standalone
ERIM-CPI and ERIM-SS without the protection of any sand-
box to show that even in the worst case (6.20%), most of the
overhead (5.72%) can be attributed to the PKU-based memory
isolation scheme and not the sandbox.

7.1.2 Isolating OpenSSL keys in server applications.

Similar to previous work [70], we isolated OpenSSL ses-
sion keys in popular server applications with ERIM (ERIM-
OpenSSL), to protect against server application vulnerabili-
ties such as Heartbleed [27]. We configured lighttpd, nginx
and redis, through their config files, to use ERIM-OpenSSL
and only use ECDHE-RSA-AES128-GCM-SHA256 cipher and

APP

XOM-Switch with the

Cerberus Sandbox

nginx (1 worker) 0.04%
nginx (2 workers) -0.02%
nginx (3 workers) -0.09%
lighttpd (1 worker) 0.02%
lighttpd (2 workers) 0.50%
lighttpd (3 workers) 0.16%
redis (1 I/O thread) 1.48%
redis (2 I/O threads) 0.88%
redis (3 I/O threads) 0.00%
geometric mean 0.33%

Table 3. We applied eXecute Only Memory (XOM) using
XOM-Switch. We protected XOM-Switch with the Cerberus
sandbox. The Cerberus sandbox here corresponds to the
sandbox described in Section 6.1.2. We report the overhead
of XOM-Switch with this sandbox compared to the native
execution. The standard deviation is below 2.17% in all cases.

AES encryption for sessions. For the experiments, we re-
placed ERIM’s sandbox with the sandbox described in Sec-
tion 6.1.1 (Cerberus sandbox). Our results are shown in Ta-
ble 2. We report an overhead of -1.29–1.34% with geometric
mean of 0.47%, which is lower compared to previous work
that was evaluated on a similar setup [70].

7.1.3 Protecting Execute Only Memory.

We used XOM-Switch [55] to apply eXecute Only Memory
(XOM). XOM-Switch is vulnerable to attackers that attempt
to abuse PKU to disable XOM, unless it is combined with an
additional mitigation such as CFI. We lift this requirement
by combining XOM-Switch with the PKU-based sandbox
described in Section 6.1.2 (Cerberus sandbox). Our results
are depicted in Table 3. We report overhead of -0.09–1.48%
with geometric mean of 0.33%. Our results indicate that it is
more efficient to protect XOM with a PKU-based sandbox
than CET, since concurrent work showed that CET imposes
overhead of 2–8% [15].

7.2 Security and Completeness

We analyzed the security of the constructed sandboxes on
existing proof-of-concept attacks [21] and the two additional
attacks that we discovered while building Cerberus (see Sec-
tion 4.3). For the former, we used the open-source implemen-
tation of the exploits5, while for the latter we used our proof-
of-concept exploits. We verified that the developed sand-
boxes stop all the attacks described in Sections 4.2 and 4.3,
except for signal context attacks (see Section 4.2.7). This is
not a fundamental limitation of our approach, but of the
current prototypes of the framework and the constructed
sandboxes. We discuss potential solutions to stop signal con-
text attacks in Section 8. Our results are depicted in Table 4.

5https://github.com/VolSec/pku-pitfalls
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Attack

Cerberus

Sandboxes

Inconsistencies of PT permissions [21] ✓

Inconsistencies of PKU permissions [21] ✓

Mapping with mutable backings [21] ✓

Changing code by relocation [21] ✓

Influencing intra-process behavior with seccomp [21] ✓

Modifying trusted mappings [21] ✓

Race conditions in scanning [21] ✓

Determination of trusted mappings [21] ✓

Signal context attacks [21] ✗

Vetted unsafe instruction relocation Section 4.3.1 ✓

Incomplete debug register update Section 4.3.2 ✓

Table 4. Security analysis of the PKU-based sandboxes
described in Section 6.1. We refer to these sandboxes as
Cerberus sandboxes. ✓ indicates that the sandbox stops the
attack, while ✗ indicates the opposite.

Sandbox Characteristics

Hodor’s ERIM’s Cerberus

Sandbox Sandbox Sandboxes

Handling of unsafe instructions Incomplete Incomplete Complete
Kernel Modifications Major Minor Minor
PKU Pitfalls Protection ✗ ✗ ✓∗

New PKU Pitfalls Protection ✗ N/A ✓

Performance overhead Low Low Low
∗Except for signal context attacks (see Section 4.2.7).

Table 5. Comparison of different PKU-based sandboxes. We
refer to the sandboxes described in Section 6.1 as Cerberus
sandboxes.

We compared the sandboxes described in Sections 6.1.1
and 6.1.2 (we refer to them as Cerberus sandboxes) with
the ones provided by ERIM and Hodor. The comparison is
shown in Table 5. TheCerberus sandboxes are the first PKU-
based sandboxes that can handle unsafe instructions without
causing security or usability issues (see Section 4.1). The
Cerberus sandboxes are also the first PKU-based sandboxes
that prevent the attacks described in Sections 4.2 and 4.3,
except for signal context attacks (see Section 4.2.7). The new
attacks described in Section 4.3 specifically target Hodor’s
instruction vetting mechanism, and are not applicable (N/A)
to ERIM. Both the Cerberus sandboxes and ERIM’s sandbox
are implemented in user space; nevertheless they require
a small kernel patch to optimize performance. Last, all the
sandboxes in this list incur low performance overhead.

8 Discussion

In this section, we discuss the limitations of our approach
and alternative solutions.

Signal context attacks. A concurrent work with ours
proposes Endokernel [15], a subprocess virtualization
scheme to deal with challenges in in-process isolation. Specif-
ically for signals, the authors describe a signal virtualization
mechanism that prevents attackers from tampering with the

PKRU register by abusing signals (see Section 4.2.7). However,
two of the three provided implementations of Endokernel
rely on additional mitigations, software diversity and CFI,
which come with their own limitations regarding efficacy
and performance. Some of the techniques used in Endokernel
could be applied to our framework to prevent signal context
attacks. This is feasible because ptrace can intercept, delay,
deny, and redirect signals in ways similar to Endokernel [15].

Restrictions onmemorymappings. Cerberus imposes
restrictions on memory mappings to deal with attackers that
target mappings with mutable backings as described in Sec-
tion 6.1.1. This might lead to usability issues in applications
such as older JIT engines, which used double-mapping as a
way to bypass SELinux’sW∧X policy [26, 57]. Modern JIT en-
gines no longer use double-mapping, however, since it can be
detrimental to the application’s security [23]. In case we have
to allow such mappings, we could use static and dynamic
techniques to intercept all shared memory accesses [75], and
block attackers from abusing multiple mappings of the same
physical memory to introduce unsafe instructions.

Syscall interposition. Similar to previous work [76, 77],
we could extend our syscall agent to forward system calls
to an in-process monitor instead of a ptrace-based moni-
tor. This would allow the sandbox to efficiently interpose
frequently-called system calls in user space (e.g., open-like
calls). To deal with attacks that target the in-process monitor,
we could implement the in-process monitor in a safe lan-
guage like Rust, or use PKU to isolate the in-process monitor
from the untrusted code [64, 80]. Alternatively, we could also
extend Cerberus to support alternative system call interpo-
sition techniques that leverage binary rewriting [5, 8, 37],
virtualization [10, 44], or syscall user dispatch [4].

Multi-threaded applications. Currently, we use in-
struction emulation to deal with applications that use multi-
ple threads. However, this might add significant overhead in
cases where several pages contain unsafe instructions. One
suitable alternative could be to use process-wide eventsmoni-
toring that will be available in future kernels [28]. Otherwise,
we could implement a stop-the-world mechanism using sig-
nals to ensure that all the threads of a process are stopped,
and then update their debug registers synchronously. This
would require though to first provide a concrete solution for
signal context attacks (see Section 4.2.7).

Multiple levels of trust. We only experimented with ap-
plication partitioning schemes that use two levels of trust
(trusted and untrusted). However, with our framework it
would be possible to develop sandboxes for systems that use
more than two memory domains, since the constructed sand-
boxes can reliably determine the current executing domain
by inspecting PKRU as described in Section 5, and track the
sensitive data of each domain.
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9 Related Work

In-process isolation has been explored in depth, resulting in
dozens of systems. In this section, we summarize works on
in-process isolation that do not rely on PKU.

OS abstractions. Previous work introduced OS abstrac-
tions to enable multiple memory views and fast transition
between them within a process address space [12, 20, 38, 51].
These approaches expose thread-like entities, control which
resources they can access, and permit efficient transitions
between them. However, all these techniques are not directly
applicable to legacy code without code modifications.

Virtualization-based techniques. Hodor [36] and
SeCage [53] leverage virtualization extensions [22] (VT-x),
to provide different memory views for trusted and untrusted
code. SeCage is vulnerable to an in-process adversary
unless it is used in conjunction with CFI, while Hodor’s
VT-x based implementation is less efficient than Hodor’s
PKU-based counterpart [36]. Intel and AMD CPUs provide
Supervisor-mode Access Prevention (SMAP) hardware
feature to disable kernel accesses to user space memory.
Seimi uses SMAP and VT-x to provide low cost and
secure in-process isolation [81]. xMP [61] extended Xen
hypervisor’s altp2m subsystem [49, 60] and the Linux
memory management system to isolate sensitive user space
and kernel data in disjoint xMP memory domains.

Hardware extensions. Researchers also proposed hard-
ware extensions to provide efficient fine-grained component
isolation. CHERI [83] and CODOMs [74] extended the RISC
and x86 ISAs respectively, with capabilities. Donky [65], on
the other hand, augmented the x86 and RISC-V ISAs to pro-
vide secure memory protection domains similar to PKU. Mi-
croStache [56] and IMIX [31] extended the x86 ISA with in-
structions to access safe regions. ARM memory domains [7]
are similar to PKU domains, but they are only available on
32-bit chips and domain permissions can only be modified
with privileged instructions. This paper focuses on solutions
that can be built on commodity x86 CPUs.

SFI. Software fault isolation (SFI) restricts parts of an ap-
plication code from accessing memory outside of designated
bounds [18, 24, 25, 29, 30, 54, 67, 79, 85, 86]. SFI techniques
employ complex static and dynamic analysis and instrumen-
tation that introduce non-negligible overhead. In addition,
many of the proposed techniques rely on an additional mit-
igation such as CFI, to prevent in-process attackers from
bypassing bounds checks.

Compartmentalization. Partitioning an application
into compartments and defining which resources they
can access is an open problem and it is orthogonal
to this paper. Previous work focuses on identifying
suitable isolation boundaries in applications and OSes
using automatic and semiautomatic (e.g., annotations)

techniques [9, 14, 33, 35, 42, 52, 62, 72, 73, 84]. However,
completely automating compartmentalization of existing
software is still challenging.

10 Conclusion

Recent research has explicitly highlighted the extreme care
that should be taken when implementing PKU-based sand-
boxing, mentioning a large number of edge cases and a dif-
ference in perspective between the OS and the security com-
munity on PKU as contributing factors. In this paper, we
analyzed the various challenges of PKU-based sandboxing.
We also introduced two new proof-of-concept attacks that
bypass Hodor’s sandbox.

We then presented Cerberus, a new PKU-based sandbox-
ing framework that facilitates development of PKU-based
sandboxes. We applied our framework to build sandboxes
for two state-of-the-art PKU-based memory isolation sys-
tems: ERIM and XOM-Switch. We evaluated the security and
performance of the constructed sandboxes using proof-of-
concept exploits and high-performance server applications
respectively. Our extensive evaluation shows that Cerberus
overcomes limitations of existing work, enabling practical,
efficient, and secure PKU-based sandboxing.
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