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Abstract—After several decades of defensive research against
the exploitation of memory errors, a wide range of tech-
niques has been proposed, yet no silver bullet has been found.
Multi-Variant eXecution (MVX) is one promising proposal
for defending against a wide range of known and potentially
unknown attacks. MVX systems run multiple program vari-
ants in parallel on the same inputs while monitoring their
behavior and deduplicating their outputs. By constructing
these program variants using automated software diversity
techniques, we can ensure that the variants behave identi-
cally under normal operating conditions but diverge when
attacked. The MVX system detects these divergences and
reacts appropriately.

State-of-the-art MVX systems have several fundamen-
tal problems that inhibit their real-world adoption. First,
they often require full source code availability to construct
variants and eliminate non-deterministic program behavior.
Second, they incur significant resource overhead that linearly
increases with the number of variants running in parallel.

We propose Partial Multi-Variant eXecution (PMVX), a
technique that can mitigate these problems by limiting the
scope of MVX to certain well-delineated parts of a target
application and by running the rest of the application in
Single-Variant eXecution (SVX) mode. PMVX relaxes the
source code availability requirement of traditional MVX sys-
tems and yields substantially reduced resource consumption
while maintaining the strong security guarantees of these
systems. However, PMVX implementations must address the
non-trivial problem of ensuring all variants are in equivalent
states whenever they switch from SVX to MVX mode.

We designed and implemented a proof-of-concept PMVX
system called FORTDIVIDE that solves this state-equivalency
problem using state migration and resynchronization. We
thoroughly evaluated the security and performance of our
system as a whole, and of our state migration and synchro-
nization mechanisms in isolation. We conclude that PMVX
has great potential but needs to be applied with the utmost
care since the added overhead of state resynchronization can
quickly outweigh the benefits of running in SVX mode.

1. Introduction

In a world increasingly reliant on software, C and
C++ remain omnipresent in our software stacks. Low-level
systems software such as operating system kernels, web
servers, and browsers largely favor C/C++ over other lan-
guages due to its unparalleled performance and features.
Unfortunately, these come at a hefty price. Loose language

specifications and a lack of built-in safety checks, the very
basis for its performance advantages, riddle extensive code
bases with undefined behavior and memory errors [1].
These memory errors are continuously exploited to take
control of systems or exfiltrate sensitive data [2–9], and
have spawned a veritable arms race between hackers and
defenders for the past several decades [10].

From early on in this arms race, software diversity
showed to be a promising mitigation strategy [11–13].
At its core, this strategy introduces some randomness in
the software to generate different variants. While these
variants adhere to the software’s original semantics, they
can differ in implementation aspects that attackers rely
on to exploit memory errors. Address Space Layout Ran-
domization (ASLR), which randomizes the base address
of memory mappings, is one commonly known diversifi-
cation technique. Others include randomizing register al-
location [13], instruction selection [14], or data representa-
tion [15]. Unfortunately, the reliance on randomness alone
does not guarantee protection against exploits, which
can still be tailored to compromise one or few variants,
possibly aided by information leakage attacks [16].

Multi-Variant eXecution (MVX) systems further rein-
force software diversity by running multiple variants in
parallel on identical inputs while monitoring their behav-
ior and deduplicating their outputs [17–34]. These systems
generate structurally asymmetric program variants, which
are highly likely to behave differently when exposed to the
same exploit payload. Such divergences in the execution
can then be detected by a monitor, which can take appro-
priate action [35]. A careful choice of software diversity
techniques can deterministically inhibit a wide range of
attack vectors [17, 23], making MVX systems a promising
general defense against memory exploits.

Unfortunately, MVX has seen little to no adoption
in the real world. One reason is that existing systems
often require non-trivial source- or compiler IR-level
transformations throughout the entire protected program.
For example, the system might produce program variants
using compile-time software diversity techniques [13], or
it might require the instrumentation or removal of program
code that triggers so-called benign divergences (i.e., diver-
gent behavior that is not the result of an attack) [21, 36].
For these reasons, programs whose source code is not fully
available might be incompatible with MVX. Secondly,
MVX significantly increases system resource consumption
due to the variant replication mechanism that underpins
their deterministic security guarantees. Even ignoring the
MVX system’s (limited) per-variant monitoring and cross-



variant synchronization overhead [24], the increase in
memory consumption and computing power required to
run programs under MVX protection is directly propor-
tional to the number of variants run concurrently. With just
two variants, programs require double the number of free
CPU cores to avoid creating scheduling bottlenecks that
devastate the system’s run-time performance. This cur-
rently makes MVX ill-fit for applications that effectively
utilize the underlying platform’s available parallelism or
for systems that are otherwise resource-constrained.

At its core, the issue in both cases above is that current
state-of-the-art MVX systems indiscriminately replicate
all program state across all variants, subjecting the pro-
gram in its entirety to the compatibility and comput-
ing resource requirements of full multi-variant execu-
tion. However, not all parts of the program tend to be
equally security-sensitive [37, 38], or equally in need of
full replication and protection. For instance, parts of the
program that directly manipulate user input are generally
at a much higher risk of exploitation [39–41], and benefit
more from the monitoring and diversification features of
the MVX system. Recent CVEs for nginx, for example,
show that most security vulnerabilities are in the MP4
and HTTP/3 modules1, making isolating specific modules
that are under active development an interesting option
as well. By contrast, parts that have been thoroughly
audited or formally verified are at much lower risk. Ex-
isting programs already recognize such asymmetry in the
exploitability of their components. For example, modern
browsers explicitly isolate JIT engines and media codecs
from the rest of the browser through the process boundary.
More generally, compartmentalization mechanisms divide
a program into at least two domains, commonly labeled
trusted and untrusted, and define explicit call gates that
regulate access control between the two [42–45]. In such a
design, the trusted part is assumed to be free of exploitable
bugs and allowed to access all memory. In contrast, the
untrusted part receives significantly fewer privileges and
has its access to the trusted part revoked.

In this paper, we adapt the security guarantees of
MVX systems to fit the asymmetric security require-
ments of modern software components, curbing MVX’s
excessive resource consumption and full source code re-
quirements. We propose Partial Multi-Variant eXecution
(PMVX), which limits MVX to the most security-critical
or least trusted parts of the application, leaving the rest
running under Single-Variant Execution (SVX). Under
PMVX, trusted portions of the application do not incur
the full replication overhead, nor are they subjected to the
MVX compatibility or source code requirements, while
the MVX system’s security guarantees remain maximally
upheld in less trusted parts through strong monitoring
and full replication. In summary, we make the following
contributions:

• We explore the design space of PMVX systems
and identify state migration as the most funda-
mental design challenge.

1. CVE-2024-7347, CVE-2024-32760, CVE-2024-31079, CVE-2024-
35200, CVE-2024-34161, CVE-2024-24989, CVE-2024-24990, CVE-
2022-41741, CVE-2022-41742, and CVE-2018-16845

• We implemented one concrete design in a pro-
totype called FORTDIVIDE2, which we thor-
oughly evaluated using microbenchmarks and
server benchmarks. Appendix A outlines the avail-
ability of the FORTDIVIDE source code.

• We conclude that PMVX has great potential but
needs to be applied with care since frequent state
migration can severely degrade the system’s run-
time performance.

2. Background

Redundant execution has seen several use cases over
the years, such as improving application reliability [28,
46] and dynamic software updating [47]. Security-oriented
MVX systems harness ideas from redundant execution to
defend against the exploitation of memory vulnerabili-
ties [24]. They use software diversity to generate diversi-
fied variants of a given program and run them in parallel,
replicating all input and deduplicating all output. They
suspend the variants at specific points during execution,
called Rendez-Vous Points (RVPs), to compare the state of
the variants and verify their equivalence before allowing
them to proceed. The amount of introduced diversity and
the granularity of the RVPs determine the strength of the
security guarantees an MVX system can enforce.

Diversification. MVX systems operate on seman-
tically equivalent variants of the same program that vary
in their implementation details. The idea is that benign
program semantics are generally not dependent on low-
level properties, such as the location of code pages in
the address space. However, exploits typically only work
for a specific memory layout or code structure. Given
identical inputs, this causes the variants to reliably and
visibly diverge during exploitation, as not all the variants
react the same way to the malicious payload.

Prior work has applied various software diversity tech-
niques to the MVX context over the years. In their sem-
inal work, Cox et al. introduced non-overlapping address
spaces through a compile-time transformation [17], which
deterministically inhibited both code-reuse and data-only
attacks relying on absolute addresses. Several other MVX
systems have since furthered the usability and security
of MVX by diversifying the address space at run time in-
stead [24, 26], and introducing additional diversity such as
reversed stack layouts [20], randomized heap layouts [18],
and more [20, 22, 24, 26, 32–34, 48].

Rendez-Vous Points. To reliably detect diver-
gences, security-oriented MVX systems execute the vari-
ants in lockstep, suspending and synchronizing them at
RVPs to verify the equivalence of their state. In case of a
divergence, the monitor takes action to prevent the attack.
Otherwise, the variants are allowed to continue executing
until the next RVP. RVPs can be applied at different gran-
ularities, such as on every call to a sensitive standard C
function, but the state of the art for security-oriented MVX
systems is to use system calls as RVPs [21, 32, 48, 49],
and to let the monitor compare system call numbers and
arguments for equivalence. System calls are a natural RVP
choice since they are executed infrequently enough to

2. https://github.com/ReMon-MVEE/ReMon/releases/tag/
eurosp-2025

https://github.com/ReMon-MVEE/ReMon/releases/tag/eurosp-2025
https://github.com/ReMon-MVEE/ReMon/releases/tag/eurosp-2025


permit low-overhead monitoring. However, they are still
the primary way for applications to interact with the envi-
ronment. Any successful exploit eventually has to execute
system calls to damage the victim, which the MVX system
will check for divergences. Additionally, MVX systems
must replicate program input and deduplicate program
output, most of which happens through I/O system calls.
To facilitate input replication and deduplication, MVX
systems elect one variant as the leader, which actually
gets to perform deduplicated system calls, e.g., creating
or modifying files, while the other follower variants are
only used to verify equivalence.

Despite the advantages of syscall RVPs, they can incur
a significant performance penalty for syscall-intensive ap-
plications like web servers [24]. Under full lockstepping,
all variants have to wait for each other at every system call
before their states can be compared and the system call
can be executed. To mitigate this overhead, state-of-the-art
MVX systems do not enforce strict variant synchroniza-
tion on all system calls [22, 24, 28], but instead implement
relaxed RVPs. Relaxed RVPs allow the leader variant
to continue execution without synchronously waiting for
the other variants to reach the same RVP. Instead, the
leader records its state when entering the RVP, and lets
follower variants asynchronously verify equivalence once
they reach the same RVP later on. This mechanism greatly
improves performance, and only comes at a minor security
cost as the delayed detection window is typically small.
Even so, MVX systems typically still enforce total variant
synchronization on some highly security-sensitive system
calls, e.g., mprotect or execve.

Monitor Design. Many designs for MVX moni-
tors have been introduced in prior work, which attempt
to strike a balance between performance overhead and
security guarantees. Cox et al. presented the original MVX
design [17], which featured a kernel-space monitor. In-
kernel monitoring grants strong monitor isolation and
RVP enforcement, with low syscall interception overhead.
However, it also embeds the large and complicated MVX
monitor in kernel space, where any bugs in it affect the
security and reliability of the entire system [24], not just
the monitored application alone.

More pragmatic designs place the monitor in user
space and try to match the advantages of kernel-space
monitors otherwise. They generally rely on the kernel’s
debugging infrastructure for system call interception, e.g.,
using Linux’ ptrace API to monitor the program’s
system calls from a different process [20, 23, 50]. Un-
fortunately, while comprehensive, Linux’ ptrace infras-
tructure incurs a significant performance overhead, largely
due to the many context switches required to intercept
even a single system call [24, 28, 51].

As a result, MVX systems have spawned substantial
innovation in in-process syscall monitoring mechanisms
that avoid ptrace’s context-switching overhead. For one,
some designs attempt to invoke an in-process monitor by
specially handling common syscall invocation sites, e.g.,
preloading libc wrapper functions [52, 53] or statically
rewriting syscall instructions to invoke the monitor
directly [28]. However, these designs are unsuitable for
security-oriented MVX where there is a risk of compro-
mised variants introducing or discovering raw syscall
instructions and using them to perform syscalls directly,

bypassing the monitor. Pure in-process monitors addition-
ally struggle to comprehensively isolate themselves from
tampering attempts by compromised variants [28].

Hence, MVX systems with strong security guarantees
use the kernel to authoritatively inform the monitor of all
syscalls made by the variants, and employ countermea-
sures to prevent any malicious tampering with in-process
monitoring components. MvArmor uses Dune [54] to run
the variants as hardware-virtualized processes with the
MVX monitor as a hypervisor [22], which comprehen-
sively isolates the monitor from the variants and reliably
intercepts all system calls. However, it struggles to support
all operating system features, e.g., multi-threading, pri-
marily as a limitation of the prototype, but also as a symp-
tom of the engineering-heavy maintenance necessary to
support process-level virtualized implementations of ever-
evolving OS features. In contrast, ReMon [24] runs all
variants and monitors in regular user-space processes and
uses a hybrid syscall interception mechanism that enables
simultaneously efficient and secure monitoring. A Cross-
Process Monitor (CP-MON) utilizes ptrace for strict
RVP enforcement, while a more efficient In-Process Moni-
tor (IP-MON) solely handles relaxed RVPs. A small kernel
patch brokers syscalls between CP-MON and IP-MON
appropriately based on a user-configurable relaxation pol-
icy. IP-MON further employs additional countermeasures
to prevent confused deputy attacks or memory corruption
attacks by compromised variants [24]. We implement our
PMVX prototype, FORTDIVIDE, on top of ReMon due
to its maturity and continued maintenance.

Benign divergences. Variants running in an MVX
system must receive identical inputs to avoid divergence.
Most MVX monitors achieve this by replicating the re-
sults of input system calls executed by the leader vari-
ant to the follower variants that did not execute those
calls. However, previous research has repeatedly shown
that variants can also receive inputs from sources other
than input system calls. Examples include the CPU time
stamp counter and random number generator [20], the
virtual system call interface [28], asynchronous signal
delivery [55], and inter-process communication through
shared memory [19, 56]. Additionally, variants may use
run-time and variant-specific execution properties as im-
plicit inputs. For instance, memory addresses can differ
across variants due to the software diversity techniques
used to construct them [21, 57], or variants may observe
shared state changes in different orders in multi-threaded
environments [36]. Variants that operate on such implicit
inputs can diverge benignly, even if they are not under
attack. MVX systems typically address these benign diver-
gences by neutralizing sources of implicit inputs through
additional RVPs, implemented via compiler instrumenta-
tion [56] or run-time interception [20, 21]. Still, even state-
of-the-art MVX systems cannot reliably prevent all benign
divergences, particularly those caused by differences in the
memory layout of the variants [21, 24].

3. Threat Model

We adopt the same threat model as earlier work on
MVX [22, 24]. We assume an adversary tries to exploit
memory errors in an application to launch an attack. This
adversary can either interact with the application from



a remote machine or from an unprivileged local user
unable to directly tamper with processes running under
MVX control other than through the interface exposed
by the program. On the defensive side, we assume the
MVX system has correctly diversified its variants such that
the adversary’s exploitation attempts trigger detectable
divergences [17, 20, 23].

We further assume that standard defenses, such as Data
Execution Prevention (DEP) and Address Space Layout
Randomization (ASLR), are in place, even though these
are not required for our system’s security. We assume that
our MVX implementation, the kernel, and the hardware
we run on, is trusted and free from exploitable bugs.
Finally, we consider micro-architectural attacks to be out
of scope [58–61].

4. Design

Our proposed PMVX system operates much like a
traditional MVX system in that the end user launches
the protected application by starting the MVX monitor.
The monitor then spawns one process for each program
variant and subsequently interposes itself between these
newly created processes and the OS kernel. From this priv-
ileged position, the MVX monitor can intercept, examine,
and, if necessary, manipulate all interactions between the
variant processes and the operating system. This enables
the monitor to replicate input, detect divergent behavior,
deduplicate outputs, and stop compromised variants before
they can harm the host system. Throughout this process,
the MVX monitor ensure that all uncompromised variants
remain in equivalent states [20].

The primary difference with a traditional MVX sys-
tem is that, in our PMVX system, protected application
variants are compartmentalized into a trusted/SVX and an
untrusted/MVX compartment. Our PMVX monitor allows
only the designated leader variant to execute so long as the
application execution remains in the trusted/SVX compart-
ment. If the execution crosses the compartment boundary,
the variants notify the PMVX monitor, which then either
resumes previously suspended follower variants, creates
new follower variants (when switching to MVX mode),
or suspends/terminates existing follower variants (when
switching to SVX mode). The fundamental challenge here
is twofold. First, we need to ensure that these transitions
incur low overhead. Of course, the overall overhead of
compartmentalized applications is primarily determined
by the granularity of the compartment boundary and the
frequency of inter-compartment switches [62], the deter-
mination of which is an orthogonal and active area of
research [63]. Still, we explore different design directions
to make transitions between SVX and MVX mode as
efficient as possible (cfr. Section 4.1).

Second, we must ensure that all variants are brought
into equivalent states whenever we switch to MVX mode.
This involves propagating program state from the sole
variant executed in SVX mode to all variants we re-
sume/create when we switch to MVX mode. If any single-
variant program state changes are incorrectly replicated
to follower variants during untrusted execution, they will
likely cause the follower variants to diverge from the
leader variant and each other, which would constitute an
unrecoverable benign divergence.
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Figure 1: Conceptual representation of process timelines
and CPU load when running a program natively (a), under
classical MVX (b), and under two possible implementa-
tions of PMVX (c, d). Notice how PMVX decreases CPU
load compared to full MVX.

4.1. Efficient Mode Transitions

We distinguish two main approaches to control the
execution of follower variants and implement the transi-
tion between SVX and MVX mode, which we refer to
as clone/kill and resume/suspend. Figure 1 visualizes the
difference between both.

clone/kill. When the program is about to enter
MVX mode, a simple approach is to clone the existing
leader variant (i.e., the variant we executed in SVX mode)
to create the required number of follower variants (cfr.
Figure 1c). After the clone, the PMVX system immedi-
ately operates in full MVX mode and monitors the variants
for divergences while executing untrusted code. When
the program transitions back to trusted code, the PMVX
system can kill the followers and switch back to SVX
without multi-variant monitoring.

While simple, the clone/kill approach has a few draw-
backs. First, cloning a process is expensive, even on mod-
ern operating systems. It requires allocating a new process
control block with a copy of the leader’s page tables and
other duplicated state. Cloning the leader for each follower
variant during every transition to MVX mode causes a
substantial delay in MVX activation, potentially making
the performance drawbacks of using PMVX outweigh its
resource efficiency gains. Second, since every follower
is an exact clone of the leader, they lack the diversity
that underpins the exploit detection capabilities of MVX.
To maintain variant diversity, all followers should be re-
diversified on the fly, which adds even more overhead
to the already costly clone-style MVX transition. Online
variant re-diversification also adds significant complexity



to a PMVX system and requires the implementation of
efficient diversity generation mechanisms directly on the
critical path [52, 64], which may create a new trade-
off between the amount of diversity and the speed of
diversification where there previously existed none [13].

resume/suspend. Alternatively, we can launch the
PMVX system in MVX mode and immediately spawn
diversified follower variants, as per regular MVX startup.
Whenever the program transitions into trusted code, the
PMVX system switches to SVX by simply keeping the
followers suspended and having the leader variant con-
tinue execution (cfr. Figure 1d). This approach allows us
to fully exploit existing variant diversity, unlocking any
diversification technique for use with PMVX. On any later
transition into MVX, we simply resume the followers.

Although this method keeps the suspended follower
processes alive during SVX, it does not increase system
utilization. The followers do not consume any CPU time,
and their resident memory can be swapped out on-demand
to satisfy potential surges in memory consumption during
SVX. In addition, resuming and suspending processes is
faster than cloning and killing them, potentially making
transitions between SVX and MVX more efficient.

Nevertheless, the resume/suspend approach also
comes with downsides. When resumed, the follower vari-
ants will not be aware of any program state changes
made during SVX mode, which they likely depend on
to ensure correct behavior during MVX. To avoid diver-
gences between the leader and the followers, the leader
variant’s updated state must be migrated to the follow-
ers when entering MVX mode, which presents its own
engineering and design challenges. Still, we expect this
state migration to be at most as complex and costly
as the variant re-diversification necessary for clone/kill
while avoiding any restrictions on diversity techniques and
without incurring the performance penalty of repeatedly
cloning and destroying new processes. As a result, we opt
to implement the resume/suspend approach in our PMVX
prototype, FORTDIVIDE, and outline our approach to
state migration in Section 4.2.

PMVX-program interface. PMVX-protected ap-
plications must notify our monitor to instigate a switch
between MVX and SVX. We do this by injecting special
RVPs into the protected program through recompilation,
hooking, binary rewriting, or any other available method.
Upon reaching SVX-to-MVX RVPs, the leader variant
executes a system call. The monitor intercepts this system
call and resumes suspended follower variants. Similarly,
when the variants reach MVX-to-SVX RVPs, they execute
a system call that prompts the monitor to suspend all
followers. Note that attackers cannot abuse the latter RVP
to disable MVX maliciously. Doing so would require
them to successfully exploit a vulnerability in all variants
while the system runs in MVX mode. Proper variant
construction makes such exploits impossible by design.

Note that we do not exclusively assign specific code
sections to either of the two PMVX modes. Code such
as libc functions is often shared between the trusted
and untrusted program parts, and must be callable from
MVX and SVX mode. By introducing additional RVPs
that signal compartment boundary crossings to the PMVX
monitor instead of rigidly assigning code pages to each
domain, we naturally support such code-sharing behavior.

setup_more_state

setup_done

setup_some_state
main

ld.so

dangerous1

utility2utility1

dangerous2 safety

Single-Variant Execution

Multi-Variant Execution

M->SVX

S->MVX

S->MVX M->SVX

Figure 2: Example call graph with different parts of the
program running in SVX or MVX mode and some being
able to run as both.

Figure 2 shows an example program flow where different
code regions execute in MVX or SVX based on the
switching RVPs along the execution path. In this example
the application only switches back to SVX after the ap-
plication has finished its own setup. It also shows how the
lack of a switching RVP for utility2 makes it available
in SVX and MVX mode. A re-entrant call such as from
dangerous1 to dangerous2 could be supported by
the RVPs, though ideally manual involvement would make
this a direct call. Additionally, switching back to SVX
early, such as the call to safety, can further add to
PMVX’ benefits.

4.2. State Migration

Under resume/suspend, we must migrate the modified
leader variant’s state to the suspended followers at each
transition from SVX to MVX. To this end, we designed an
efficient state migration mechanism that records relevant
state updates in the SVX monitor and applies them to the
followers when switching to MVX.

We distinguish two main categories of state the leader
can accumulate during SVX: process-management data
and program-execution data. The first encompasses all
external state of the leader variant process as managed
by the OS through system calls, e.g., the status of file
descriptors, memory mappings, threads, signal handlers,
etc. The second includes all changes to the leader variant’s
memory, generally made through regular, unprivileged
memory writes in user space.

Any security-oriented MVX system already intercepts
all system calls, which naturally includes those that
change the process-management state. During SVX, we
therefore keep our PMVX monitor attached to the leader
variant to record such state changes. To replicate these
changes in the followers, we temporarily resume them and
force them to execute the same system call that caused the
state change by single-stepping them through a syscall
instruction and carefully setting up the argument registers.
After completion, we restore all our modifications to the
follower’s registers and memory, and suspend them again.

Technically, we could employ a similar strategy for
program-execution state. The monitor could intercept and



replicate every write instruction during SVX that may
possibly contribute to the leader’s relevant state during
the switch back to MVX. However, this would introduce
exorbitant overhead in SVX, which contradicts PMVX’s
goal of improving efficiency. Instead, we opt for a lazy
fast-forward approach, in which we try to determine which
relevant memory contents have changed since the previous
migration and migrate only those contents. We identify
four main sources of such program-execution state:

The stack stores data such as local variables
and return addresses. Well-behaved programs only access
stack data in the current stack frame, or, if given a direct
pointer to them, individual stack elements in frames of
parent functions. Therefore, when entering MVX, we only
migrate the leader’s current stack frame and data reachable
through pointer arguments to the followers.

The heap stores most objects that applications
allocate dynamically. Heap objects tend to be highly
interconnected, and the overall heap structure is gener-
ally opaque to the PMVX monitor. Furthermore, with-
out hardware-supported pointer tagging/capability mecha-
nisms such as CHERI [65], it is fundamentally impos-
sible to determine the precise set of heap objects that
may be accessed from the MVX compartment, whether
statically [66] or dynamically [67]. Hence, we elect to
migrate the entire heap from the leader to the followers
when entering MVX.

Global variables can be accessed from anywhere
in the application and could, therefore, always be updated
by the SVX part. However, indiscriminately migrating all
globals would constitute a large and slow data transfer on
every SVX-to-MVX transition. Hence, we opt to migrate
globals selectively, i.e., only those that are writable and of
which the contents differ in the leader and the followers.
We identify equivalent globals among the variants through
the available symbol information in the binary.

Other memory-mapped regions can be instanti-
ated using calls such as mmap. Just like heap objects, the
PMVX monitor has no information about the structure of
these mappings, nor can it reliably predict which parts
the MVX partition will need. Consequently, we migrate
all custom memory-mapped regions when entering MVX.

Migration Mechanism. Across the sources of program-
execution state that need migration, we distinguish two
different tasks: migrating whole memory regions and mi-
grating targeted values, e.g., differing parts of objects. We
design a separate state migration technique for each.

To accommodate the migration of entire memory re-
gions, we reserve a portion of the address space in all
variants, which we call the Monomorphic Partition. Our
system forces the application to map all regions that must
be fully migrated during every SVX-to-MVX switch in
this Monomorphic Partition. The OS does not need to
be aware of this region’s existence or location. Instead,
the monitor will ensure that only the appropriate memory
regions get mapped here, similar to how state-of-the-art
monitors already control the memory layout to aid in
diversification. When the PMVX system switches from
SVX to MVX, we migrate all mappings in this memory
region by copying them from the leader to the followers.
Copying large amounts of data will lead to significant
performance overhead, so the efficiency of this copy could

dictate a substantial part of our overhead. We implement
an efficient copy-on-write approach called partial fork,
which we describe further in Section 5.1.

We generally do not migrate regions with executable
permissions, as their contents should not change after their
initial mapping. Code caches for Just-in-Time compilers
are one notable exception. We currently do not support
such programs, but with enough engineering, we could
support them transparently [68]. This only leaves regions
with a combination of readable and writable permissions.
Our MVX system does not diversify the layout of regions
in the Monomorphic Partition to avoid issues with address-
sensitive behavior [21].

This allows us to implement an optimization where
we reserve the exact same Monomorphic Partition in all
follower variants. With the addresses of equivalent data in
all variants being the same, any existing pointers to such
data do not require explicit migration. Still, not all data
can be migrated by simply mapping it in the Monomorphic
Partition. The stack, for example, is mapped at different
base addresses in each variant, and so are memory re-
gions holding global variables. This, in combination with
the diversity in executable mappings inherent to MVX,
litters the leader’s program-execution state, including the
Monomorphic Partition, with leader-specific pointer val-
ues that are not valid in the followers. Such values first
have to be translated before they can be used in MVX
mode. In addition, those mappings that cannot be migrated
through the Monomorphic Partition might still contain
data that requires migration, for example global variables.

Both cases, pointer values and regular values, intro-
duce a second, more complex, class of state migration we
need to accommodate: migrating targeted values. Instead
of migrating an entire memory region, we will only copy
specific values in them, as we illustrate in Figure 3. To
this end, we must know their precise locations and sizes
in each variant’s address space. The size is known for
pointers, but for other values can range from a single byte
to the width of a memory address to even buffers and
data structures of arbitrary size. In Section 5, we study
the problem of determining this precise information, but
for now, we assume it is known. Using this information,
we write the targeted values into an intermediate buffer in
the leader, where one part contains regular values 1a and
the other pointer values 1b . We then notify the monitor
about the SVX-to-MVX transition 2 , at which point the
followers can perform the partial fork 3 . Meanwhile, the
monitor copies the regular values over to the followers
as-is 4a and the pointer values after translating them 4b .
After 4a , 4b , and 3 , we resume the followers 5 . Upon
resuming, the followers copy the targeted values from their
intermediate buffer to their intended destination 6a 6b .
Notably here, the partial fork 3 and the copying of the
targeted values from the leader to the followers 4a 4b can
be done in parallel.

5. Implementation

We implemented a prototype of FORTDIVIDE based
on ReMon [24], a state-of-the-art system call-based MVX
system for the Linux platform. ReMon uses a cross-
process monitor that permanently attaches itself to all
variants using the ptrace API. It can optionally offload
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Figure 3: Overview of the order of operations for the
migration of state at the SVX-to-MVX RVP.

the monitoring of low-risk system calls to an in-process
monitor running in user space. We designed our system
so programmers can compartmentalize the protected pro-
gram by inserting call gates whenever the program should
switch from SVX to MVX or vice versa. We did not
investigate automated compartmentalization and call gate
insertion techniques, viewing it as parallel research.

We wrote a small kernel patch that adds two new
system calls to support MVX-SVX transitions and state
migration. The first system call, mvx_exit, suspends
the follower variants and ensures our monitor will only
receive syscall entry and exit notifications when the leader
variant executes system calls that can change process-
management state (cfr. Section 4.2). The second system
call, mvx_enter, performs the partial fork (cfr. Sec-
tion 4.2), resumes the follower variants, and re-enables
notifications for all system calls executed by the variants.

We implemented two types of call gates for switching
between MVX and SVX modes, which can be integrated
into a program by modifying its source code or hooking
function calls. The call gates for switching from MVX to
SVX are identical for both leader and followers variants,
and simply invoke mvx_exit. However, the gates for
switching from SVX to MVX differ slightly. The leader’s
version copies targeted values (cfr. Section 4.2) that need
migration into an intermediate buffer and then invokes
mvx_enter. The monitor then identifies the correspond-
ing call gate locations in the follower variants, moves their
program counters to those locations, and resumes their
execution to enter the gate. The follower’s version of the
gate, in contrast, invokes mvx_enter directly. During
the syscall, the kernel performs the partial fork to copy
over the Monomorphic Partition from the leader to the
follower, and passes control to the monitor. The monitor
translates the targeted values and copies them over to
the followers’ intermediate buffers before resuming all
variants. Finally, the followers copy the targeted values
over to their destination addresses, after which all variants
transition into the MVX partition.

5.1. State Migration

As mentioned in Section 4.2, FORTDIVIDE must
migrate two types of state from the leader variant to
the followers. Migrating process-management state is

fairly straightforward, since we can just replay the syscall
that caused the state change in all followers. Migrating
program-execution state is much more complicated. In
Section 4.2, we described our state migration as two
techniques working in tandem, entire memory region mi-
gration and targeted data migration, but left out some
specifics.

To support the migration of memory regions, we map
the heap and memory-mapped data in the Monomorphic
Partition. FORTDIVIDE does this by identifying relevant
mmap calls based on their call arguments and overwriting
the preferred base address argument at the system call en-
trance. The primary heap presents an additional challenge
as libc maps it using the brk system call by default. Since
this system call does not have a preferred base address
argument we can overwrite, we modified libc to map the
primary heap using mmap instead. This required a trivial
code change to libc.

Three apparent options are available for migrating
program-execution state from the leader to the fol-
lower variant processes. The first would be to map the
Monomorphic Partition as shared memory between the
variants. However, that would open a communication
channel between the variants and lead to issues when
multiple variants start reading from and writing to the
regions simultaneously. Alternatively, we could set up a
shared memory channel that is writable in the leader and
only readable in the followers as an intermediate, copying
the leader’s state into it first and then copying it into
the Monomorphic Partition in the followers. Here, the
memory transfers would become a significant bottleneck,
especially as the total amount of to-be-migrated data
increases. Finally, we could make the monitor transfer
the data using process_vm_writev, a system call that
moves data from one process to another. This more direct
write can eliminate intermediate transfers, but fundamen-
tally, it will do little to alleviate the memory transfer
bottleneck. Ideally, we would only copy the data modified
since the previous state migration.

As all mappings in the Monomorphic Partition are
mapped at the same addresses in all variants, we drew
inspiration from the fork mechanism. We implemented
a partial fork in our MVX entrance system call that makes
a copy-on-write version of the leader’s Monomorphic
Partition available to the followers by pointing the relevant
page table entries of the followers’ Monomorphic Partition
directly at the leader’s data and resetting the leader’s page
table entries as copy-on-write. This migration mechanism
eliminates all migration overhead in the leader and mini-
mizes the amount of data we effectively have to transfer
to the followers. As long as the variants do not write to
the Monomorphic Partition, no data must be transferred.
We also optimized our partial fork mechanism to make it
as efficient as possible by not rewriting page table entries
that are still up to date (i.e., they still point to a physical
page frame the leader has not written to since the previous
migration).

5.1.1. Migrating Targeted Values. We inject a migration
agent into the variants to support the migration of targeted
values. This agent is a shared library written in C. The
call gates we insert into the protected application call the



agent to copy to-be-migrated values from the leader to the
followers through the intermediate buffer we set up.

To copy these values, we pass the agent two lists of
(location, size) tuples. One list describes all non-pointer
values, and the other represents all pointer values. The
agent migrates values in the first list as-is. For values
in the second list, our system performs an additional
post-migration translation step that adjusts the migrated
pointer to point to the same logical object and offset as
the original pointer copied from the leader, even if the
follower variants employ a form of address space diversity.

We build the lists as follows. First, we collect the
location and sizes of the arguments of the function we
are building the call gate for, which must be migrated to
ensure the follower variants execute the function with the
same arguments. If any of the function arguments point
to the stack, we also add the pointed-to data to our lists
to ensure the follower variants see the pointed-to data
even though we do not map stacks in the Monomorphic
Partition and, hence, do not migrate the entire stack upon
switching to MVX mode.

Next, we collect the locations and sizes of to-be-
migrated global variables. While all variables could tech-
nically be migrated, this would result in unnecessary trans-
fers and potential errors with pointer values (e.g., pointers
might no longer reference the intended pointee after mi-
gration). To address this, we use offline dynamic analysis
to identify relevant global variables and their types. We
run the target application under FORTDIVIDE in a test
environment with diverse inputs. Whenever the application
switches from MVX to SVX mode, our monitor performs
a piecewise comparison of equivalent global variables in
the leader and follower variants, identifying mismatches.
Mismatches may indicate variant-specific pointers, which
we confirm by sliding a window over the region around the
mismatching bytes. If the window reveals valid pointers
to equivalent memory regions, we add their locations to
our second list. We conduct a similar comparison during
switches from SVX to MVX mode. In this case, mis-
matches indicate global variables overwritten since the last
switch to MVX mode. We add these locations and sizes
to our first list.

Finally, we build lists of targeted values in the heap
or mmap’ed data regions. If no diversity is applied to the
variants, our partial fork mechanism can migrate these
regions as-is. However, with code or data layout diver-
sity, these regions may contain variant-specific pointers.
To ensure correct migration, we add the locations of
such pointers to our second list. Since the heap structure
changes throughout the execution of the program, we can-
not automatically generate the migration handler code that
populates this second list. Instead, we support two options
for migration of these values. First, a programmer could
write the migration handler manually based on source
code analysis. The complexity of such an implementation
depends on the scope and type of diversity we apply
during variant construction. Since our current system only
applies code layout diversity, the complexity is minimal
since the only variant-specific values on the heap will
be code pointers that are easy to identify. If we also
apply data layout diversity, then all pointers to data require
migration as well. We leave such an exercise for future
work and describe data diversity techniques that do not

impose such migration requirements in Section 7.
Second, we implemented an automatic memory scan-

ning mechanism that can run during SVX-to-MVX tran-
sitions. Our scanner attempts to identify pointers in the
to-be-migrated regions in the leader, and adds them to
the second list. Technically, this scanner could replace the
manually written migration handlers entirely. However,
the scanner is prone to false positives and false nega-
tives (cfr. Section 5.1.2), incurs high run-time overhead
(cfr. Section 6.3), and negates most of the MVX security
benefits (cfr. Section 7). As such, we use it only as
a debugging and development aid, and strongly caution
against its use in deployment.

5.1.2. Benign Divergences. Section 2 lays out several
reasons why variants running in a regular MVX system
can diverge even if they are not under attack. In a PMVX
system, variants could also diverge due to incorrect state
migration caused by misidentification of targeted values
in the aforementioned migration handlers.

False positives occur when values are mistakenly
identified as requiring migration or translation when they
do not. This can happen if certain code paths explored
during offline analysis are never reached in production,
such as when features are disabled, or if our analysis
overestimates the data needing migration. For example,
our analysis might mark entire global data structs as to-
be-migrated, even if they only contain one field with a
variant-specific value.

The impact is more pronounced for the heap and
other mappings in the Monomorphic Partition, as they are
migrated indiscriminately. While much of this data may
not require migration at all, our partial fork mechanism
mitigates most of the overhead compared to directly copy-
ing the data.

False positives can also occur during pointer transla-
tion. Although rare, this could happen with uninitialized
buffers if they initially contain equivalent pointers between
the leader and followers at the first SVX entrance but later
hold a new valid pointer in the leader upon entering MVX.

Unnecessary data migration and pointer translation
add performance overhead during the switch to MVX, but
do not cause correctness issues. We analyze the perfor-
mance cost further in Section 6.1.

False negatives occur when state modified in SVX
is accessed in MVX but was missed during migration
or translation, leaving it out of sync. This can result in
detectable divergences, causing the monitor to terminate
the application. Such terminations during deployment can
impact availability. However, we can log these instances to
expand the migration set and prevent future occurrences.

6. Performance Evaluation

All experiments were run on an Intel Xeon Silver
4210R CPU at 2.40GHz, running Ubuntu 20.04 LTS,
equipped with 64GB DDR4 RAM. The kernel is Linux
5.4.212 with both ReMon’s patch to support IP-MON
and our small kernel patch to support our kernel mod-
ule, which remained loaded for each test. To make our
results reproducible, we disabled hyper-threading and
turbo boost, and set the CPU scaling governor to per-
formance. We evaluated our prototype for performance



native (µs) CP-MON (µs) IP-MON (µs)

getpid 0.09 17.03 0.64
PMVX switching 0.53 51.03 4.3

fork 46.18 - -
clone 48 - -

TABLE 1: Time to execute 10,000 iterations.

on microbenchmarks and two real-world web servers, as
well as for security on a vulnerability we added to nginx.

6.1. Microbenchmarks

To get a clearer picture of the performance impact
of the added switching to and from MVX, we set up
a microbenchmark that measures how long the switch
takes in a few scenarios. We anticipate three dominant
overhead sources during the switch we want to investigate:
resuming and suspending the followers, our partial fork,
and migrating data. Our microbenchmark consists of a
single function that consecutively calls the MVX enter
and exit system calls in a tight loop for 10,000 iterations.
We ran each experiment five times and report the mathe-
matical averages of the execution times here. We evaluated
three main configurations. The native configuration runs
without any monitoring. The CP-MON configuration runs
the microbenchmark under FORTDIVIDE, but handles the
system calls using only cross-process monitoring. Finally,
the IP-MON configuration runs the microbenchmark un-
der FORTDIVIDE using the more efficient in-process
monitoring infrastructure of ReMon.

First, we try to capture the overhead of resuming and
suspending the variants alone. Keeping the Monomorphic
Partition empty and migrating no other data ensures we
only measure the impact of calling the handling functions
in the monitor and our custom kernel module.

We measure an average time of 4.3µs for IP-MON
and 51.03µs for CP-MON. To estimate which part of this
time is added by our resume/suspend code, we separately
measure the raw syscall interception cost of our monitor
by calling getpid in a tight loop, which nets 0.64µs
for IP-MON and 17.03µs for CP-MON on average. Sub-
tracting this cost twice from the total time, once for
MVX enter and once for MVX exit, we estimate that
our resume/suspend mechanism adds roughly 3µs under
IP-MON and 16.97µs under CP-MON, which includes
replacing the arguments on each invocation, redirecting
the suspended variants, and resuming of the variants.

In contrast, we consider the potential overhead of
a clone/kill approach by solely calling either fork or
clone in a tight loop under native execution. We measure
an average time of 46.18µs for fork and 48µs for
clone. Adding the same per-syscall interception over-
head obtained from our getpid experiment, we can
expect fork and clone to respectively go up to 47.46µs
and 49.28µs under IP-MON and 80.24µs and 82.06µs
under CP-MON. This is already significantly more ex-
pensive than our resume/suspend approach, without even
factoring in the additional overhead of mandatory variant
re-diversification.

In our second test, we look at the cost of the partial
fork, which is highly dependent on the overall landscape
of the Monomorphic Partition. We vary the number of

memory regions in the Monomorphic Partition between
one and 200, with a size between one and 64 pages, and
alternate read/write and read-only permissions to prevent
the kernel from merging adjacent regions together. We
measure the lower and upper bound for each setting,
respectively representing no pages altered and all pages
altered in SVX. We simulate the latter by altering our
kernel module to always create a new Copy-On-Write
(COW) copy for each page. To avoid potential noise from
setting up the follower’s page table on the first MVX
entrance, we perform one entrance/exit cycle as a warm-
up. We only report the measurements when running under
IP-MON, as the added time difference when using CP-
MON always stays around 49.29µs, which is simply the
difference in raw syscall interception overhead. Figure 4a
and Figure 4b show a summary of the results, lower and
upper bound respectively.

For one mapping, the lower bound time cost increases
from 4.56µs for one page to 5.22µs for 64 pages, roughly
the same and barely an increase over the base cost of
the switch under IP-MON. The worst case in this test,
200 memory regions of 64 pages each totaling 50MiB,
takes around 178.69µs for a lower bound. As expected,
the lower bound increases linearly with the number of
memory regions for a given average region size and
increases as this average increases. Further analyzing the
impact of the specific distribution of memory regions over
the Monomorphic Partition for equal utilization rates, we
compare 50 memory regions of 64 pages, 100 memory
regions of 32 pages, and 200 memory regions of 16 pages.
All these consume 12.5MiB of memory. We measured
their migration costs as 48.00µs, 57.88µs, and 73.91µs
respectively. We conclude that the cost of the partial fork
also increases with the number of memory regions, though
not as significantly. This is likely because the kernel
restarts its iteration over the page table from the beginning
for every memory region, requiring synchronization and
TLB manipulations each time. Looking at the upper
bound then, we notice a dramatic migration time increase
as the number of mappings or their average size goes up.
For 200 separate page-sized mappings, our upper bound
measurement is already double that of the equivalent lower
bound scenario, and the measurements continue to diverge
superlinearly as the utilization rate of the Monomorphic
Partition increases, e.g., roughly 5x for 200 mappings of
64 pages each.

These results highlight the fact that we only want to
map regions that will be relevant for the MVX part into
the Monomorphic Partition. Otherwise, we always incur
an additional cost, even if those pages were not altered
when we switch to MVX, but especially if they are.

Finally, we look at the overhead of migrating data.
Since the translation of pointers adds extra steps to data
migration, we wanted to evaluate migrating regular values
and migrating pointers separately. We write two manual
migration handlers that migrate one value in a loop, one
as-is and one translated, and vary the number of times we
run the loop between 16 and 4096. While the additional
overhead of translating pointers is negligible for small
amounts of migrated values, it quickly adds up afterward,
as is immediately noticeable from Figure 5. This presents
us with the useful insight that qualifies the migration
overhead over the type of data we migrate: even if we have
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Figure 4: Time cost for partial fork under PMVX in
function of the amount of memory regions and relative
size of memory regions in the Monomorphic Partition.
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Figure 5: Time cost of targeted value migration for in-
creasing number of 8-byte values.

to migrate a large memory region, limiting the number
of pointers inside this region that require translation can
yield significant overhead reductions. Our optimization
that maps the Monomorphic Partition at the same location
in all variants exploits exactly this insight.

6.2. Server Benchmarks

We also evaluated our prototype in a more realistic
scenario by applying PMVX to two commonly used web
servers: nginx version 1.23.3 and lighttpd version
1.4.60. Both are configured to serve the same 4KB static
web page and nginx is configured with four worker
processes, unless stated otherwise. For the server bench-
marks we ran wrk as a benchmarking client on a separate
machine connected to our host via a private gigabit link

and configure it to continuously request the page on one
thread with 10 connections. Each run lasts 10 seconds and
we report the results as the average of five runs.

Naturally, we also need to draw the line between
SVX and MVX. We made this decision manually for this
evaluation, but based on the assumption that we want to
limit MVX to code processing user input. By analyzing
the source code we isolated the functions that translate
the incoming requests to a structure that the servers can
handle, starting MVX just after the request has been
received by the server and exiting again just before the
reply is constructed. It is important to note that these
benchmarks show a worst-case scenario, where the web
servers are set up so that the MVX is on the main path
handling requests, and thus gets triggered for every request
being handled. (Most) web servers are already developed
to handle requests efficiently, utilizing as few system calls
as possible, making the impact of our relatively expensive
switching system calls more pronounced. In a different
scenario, we might want to place a library or module that
is not triggered for every request in MVX instead.

We run two configurations for each web server. Ng-
inx C1 hooks ngx_http_process_request_line,
where incoming requests are processed. Unfortunately,
this function only returns after the request has been
timed out or the request has been fully handled, which
we do not want. Thus, we added an additional hook
on ngx_http_handler in nginx C2, switching back
to SVX when it is called, transferring the sending of
the response back into SVX. The entrance hook takes
only a single heap pointer as an argument, which we
can simply copy over to the followers. Lighttpd C1
hooks connection_handle_read_state and C2
http_request_headers_process. The first only
takes a single heap pointer as an argument, whereas the
latter takes four pointers as arguments, one being on the
stack and the others on the heap.

For the migration of other in-memory state we elected
to use manual handling in this evaluation, allowing us to
limit handling to only the smallest subset of state required
and filtering out as much noise from false positives in the
detection of state to be migrated as possible. Later we will
look into the effect of other options. Still, we discovered
what data required migration by manually analyzing the
automated discovery described in Section 5.1 and monitor
logs. For Nginx C1 we migrate 19 values, 9,248 bytes
combined, and 145 pointers, bringing the total amount
of data to 10,408 bytes. Nginx C2 moves the exit back
to SVX earlier, allowing us to forego some migrations,
we still migrate the same values, but only 95 pointers,
bringing the total to 10,008 bytes. Lighttpd C1 migrates
four values, 32 bytes combined, and three pointers, only
totaling 56 bytes. In contrast, lighttpd C2 migrates slightly
more data, seven values for 8240 bytes combined, but no
pointers. For the sake of simplicity, these handlers were
compiled into the server binaries.

As expected, the earlier exit to SVX in nginx C2,
which means no system calls are executed in MVX, out-
performs nginx C1. For nginx C2, both the CP-MON con-
figurations even outperform the original ReMon using IP-
MON, suggesting that if the division removes enough sys-
tem calls from being handled in MVX, then the overhead
of the switch can be compensated for. Since CP-MON still
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Figure 6: Comparing server benchmarks under ReMon
and FORTDIVIDE.

provides strictly higher security guarantees, we can run
MVX with CP-MON protection in our NVX mode, but
IP-MON performance, or better, overall. If performance
is more of a target, however, than FORTDIVIDE with IP-
MON achieves near native performance. In the case of
lighttpd, though FORTDIVIDE with IP-MON does
outperform ReMon with CP-MON, the frequent switches
prove too much for the server’s performance. Full results
are provided in Figure 6.

By profiling native nginx and lighttpd using
Valgrind’s callgrind tool we can estimate the relative
number of CPU cycles used by our hooks, which in turn
enables us to estimate the CPU cycles we can potentially
save using PMVX. Classic MVX would bump CPU usage
of the application, ignoring monitoring, to 200% with two
variants running. The hook for nginx C1 takes around 82%
of CPU cycles, meaning roughly 18% can run as SVX and
the CPU usage of nginx C1 is roughly 182%, this is not
much of an improvement and explains why our additional
switching has such a big impact. Nginx C2 exits back to
SVX earlier, the exit hook takes around 74.5% of the CPU
cycles, meaning in total only 7.5% of the CPU cycles are
ran in MVX and explaining the stark difference between
nginx C1 and C2. For lighttpd both configurations
are already closer together, with C1 at 19.5% and C2 at
15.5%, meaning the PMVX variants would take 119.5%
and 115.5%, respectively.

6.3. Migration Strategy Impact

We have a few options on how to handle the migration
of state, which determines how much data is migrated
and, thus, the impact on performance. Our nginx C2
configuration in Section 6.2 achieved a throughput of
96.66% compared to the baseline, but we want to see
if there is an even better trade-off between manual effort
and performance.

First, we used our dynamic analysis to detect migra-
tion targets in global data semi-automatically. With the
analysis results, we only had to define manual migration
handlers for pointers on the heap, leading to 22 copies,
58,772 bytes, and 114 pointer migrations, 73 of which
were manually defined. Our automated approach only
slightly overestimates which pointers need migration—
three more compared to manual handling—but we notice
a stark increase in the amount of data copied despite just
three more copies, now totaling 59,684 bytes, a 5.97x in-
crease. This can be explained by how we implemented the
dynamic analysis. Translating an offset back to a global
symbol, where possible, can overestimate the size of some
migration targets. In this case, most of the overestimation
comes from a single false positive symbol, a 49,152 byte
array that is untouched in our MVX mode. Even with
this overestimation, we achieve a throughput of 99.50%
of baseline for nginx, comparable to manual handling with
much less developer effort.

Finally, we evaluated the performance impact of our
automated heap scanning mechanism. This mechanism
allows us to migrate heap pointers without having to
manually write a migration handler, but it should not be
used in production due to security concerns (cfr. Sec-
tion 7). Enabling the scanner results in a staggering 4031
copies, totaling 90,844 bytes of data, and 4050 point-
ers being migrated, for a grand total of 123,244 bytes.
The amount of data copies increases because the pointer
scanning approach requires two pointers to be migrated;
the variant-specific one, which needs translation, and its
location in the Monomorphic Partition, which does not
need translation. Note that pointers already pointing into
the Monomorphic Partition are ignored by the pointer
scan. Evidently, the additional pointers migrated here
are never dereferenced in MVX mode, as the previous
manual approaches also worked without issue, without
migrating this data. The added effect of these translations
and the requirement to read and verify every pointer in the
Monomorphic Partition causes the throughput for nginx to
fall dramatically, to just 2.30%.

Our dynamic analysis encountered some false posi-
tives and overestimated the size of some migration targets.
However, as shown in Section 6.1, the migration of extra
data does not immediately increase overhead. Instead,
the increased overhead seems to largely come from the
additional pointer scanning we do. We re-ran the previous
manual heap pointer migration experiment with additional
migration of bogus pointers and values to match the total
amount of data migrated in the automated heap scanning
experiment and found that the throughput only increased
to 23.40%. Thus, the overhead here is not caused by the
monitor’s handling of the data, but rather by detecting the
pointers in the first place. The results are summarized in
Table 2.

6.4. Allocator Impact

We have shown with microbenchmarks how not only
the size, but also the configuration of the Monomorphic
Partition can have an impact on performance. Our monitor
changes the allocation behavior of the application by
mapping the heap and mmap’ed data regions into the



fully
manual auto globals auto globals

+ heap

throughput 96.66% 99.50% 2.30%

copies 19 22 4031
pointers 95 114 4050

total migration
size (bytes) 10,008 59,684 123,244

TABLE 2: Empirical migration statistics for different lev-
els of automated migration assistance in the nginx C2
PMVX instance. We find that the throughput is primarily
affected by the automated discovery of pointers in the
heap that need translation.

libc allocator FORTDIVIDE allocator

throughput 88.03% 96.66%

run start run end run start run end
regions 1 2 1 2

total pages 100 415 119 296

(a) nginx results

libc allocator FORTDIVIDE allocator

throughput 56.42% 71.01%

run start run end run start run end
regions 1 1 1 1

total pages 134 167 289 339

(b) lighttpd results

TABLE 3: Comparison between the default allocator in
libc and our custom allocator for server benchmarks run-
ning under FORTDIVIDE with IP-MON enabled.

Monomorphic Partition (cfr. Section 5). The custom allo-
cator we built to determine the layout of the Monomorphic
Partition was built with two goals in mind: limiting the
amount of memory mapped but not actively used and lim-
iting the migration of allocator state. It only has to migrate
two pointers into the Monomorphic Partition, without the
need to translate them, in contrast to the manual state
migration for libc’s allocator, which requires 265 copies,
but no pointer migration, totaling 2,240 bytes. Based on
our evaluation of state migration, we can estimate that the
difference in state migration should hardly impact perfor-
mance. Instead, what we want to look at is the difference
in overhead caused by the layout of the Monomorphic
Partition. We look at nginx C2 and lighttpd C2 from
Section 6.2, though the configuration has no real impact on
the allocation behavior, running under FORTDIVIDE with
IP-MON enabled. We run each configuration once with a
modified libc to place its allocator in the Monomorphic
Partition and once with our custom allocator. In addition
to overhead results, we also report the number of memory
regions the kernel has to handle and the total number of
pages, both at the start, when the server has not processed
any requests yet, and after a full benchmarking run.

For nginx we see that our custom allocator improves
throughput from 88.03% to 96.66%. Looking at the actual
memory footprint used by the allocator we see that libc’s
allocator has 415 pages mapped while ours has 296 pages
mapped. lighttpd’s throughput improves from 56.42%
to 71.01%, but libc’s allocator maps only 167 pages while
ours maps 339.

7. Security Analysis

PMVX systems maintain the core security property of
regular MVX systems: exploits will cause a divergence
and, therefore, fail if the protected application executes
them in MVX mode and if either (i) their payloads
must be tailored to variant-specific properties or (ii)
they produce variant-specific outputs. With this prop-
erty in mind, we now perform a theoretical evaluation in
which we describe several representative attacks that abuse
memory errors in memory-unsafe applications, examine
the conditions under which PMVX systems will stop
them, and name (at least) one concrete software diversity
technique we can deploy to fullfil those conditions. After-
wards, we also perform an empirical evaluation in which
we implemented two exploits. This evaluation confirms
that FORTDIVIDE stops the code-reuse attack by default,
and can stop the cross-boundary attack by adjusting the
compartment boundaries, as predicted in the theoretical
evaluation.

7.1. Theoretical Evaluation

Information Leakage Attacks are often the first
step toward compromising a victim application [2, 69].
The attacker could, for example, make the application leak
the location of relevant code or data, and subsequently
use the leaked data to craft a payload for the next stage
of the attack. In a PMVX system, information leakage
attacks fail if the leaking code executes in MVX mode
and if the output contains variant-specific addresses. The
PMVX system can achieve the necessary diversity by
deploying Address Space Partitioning (ASP) [17, 22].
FORTDIVIDE applies the Disjoint Code Layouts (DCL)
transformation [23] to all code regions, but does not apply
ASP to data regions in the Monomorphic Partition. As
such, FORTDIVIDE allows leaking pointers to data in the
Monomorphic Partition, but it will stop all other pointer
leaks when it runs in MVX mode.

Code-Reuse Attacks divert the control flow of a
victim application to a (set of) attacker-chosen locations
such as C library functions or Return-Oriented Program-
ming (ROP) gadgets [8]. Code-reuse attack payloads can
contain absolute addresses (e.g., traditional ROP [8] or
JOP [70]) or relative addresses (e.g., PIROP [71]). These
attacks fail in PMVX systems if the control-flow diversion
happens while the application executes in MVX mode,
and if the targets include addresses (in case of absolute
code-reuse attacks) in or variant-specific offsets (in case
of relative code-reuse attacks) to layout-diversified code
regions. PMVX systems can defend against absolute code-
reuse attacks using ASP [17, 22] or DCL [23]. They
can also defend against relative code-reuse attacks by
deploying with non-overlapping code offsets [22]. Since
FORTDIVIDE applies the DCL transformation [23] to all
code regions, it is immune to all absolute attacks per-
formed in MVX mode. It does not defend against relative
code-reuse attacks. This is not a fundamental limitation of
our system as applying the necessary diversity is simply
a matter of additional engineering.

Data-Oriented Programming (DOP) Attacks
manipulate the data flow of a victim application without
diverting its control flow [7]. In sufficiently complex



applications, these attacks can perform arbitrary compu-
tations and corrupt arbitrary data structures. DOP attacks
fail in PMVX systems if the payload executes in MVX
mode and if the attack must either write variant-specific
values, or write to variant-specific addresses (in case of
absolute DOP attacks) or write to variant-specific offsets
within a data region (in case of relative DOP attacks).
PMVX systems can defend against absolute DOP attacks
using ASP [17, 22] and against relative DOP attacks
by deploying non-overlapping data offsets [22] or heap
randomization [18]. Alternatively, they could also deploy
Data Space Randomization (DSR) to defend against all
types of DOP attacks [72, 73]. FORTDIVIDE does not
apply any defenses against DOP attacks.

We could implement such defenses in principle, but
would have to carefully consider their scope and effects
on state migration. ASP, non-overlapping data offsets, and
heap randomization would all change the layout of the
heap. Thus, by applying these randomization techniques,
we would no longer be able to map the heap in the
Monomorphic Partition. This would make state migration
dramatically slower and require us to implement migration
handlers that record and migrate all values the leader
writes to the heap during SVX.

DSR is a much more interesting alternative since it
can encrypt data using variant-specific encryption keys.
DSR can also be applied selectively to data that is not
accessed outside MVX mode, and thus does not need
to be migrated during SVX-to-MVX transitions. Such
a selective application would provide some protection
against DOP attacks, while remaining compatible with our
existing state migration system.

Cross-Boundary Attacks target the interaction
between trusted and untrusted code in our current PMVX
implementation. Recent work by Mergendahl et al.
demonstrated an exploit on multi-privilege polyglot ap-
plications [74], where unhardened but trusted Rust code
interacts with untrusted, CFI-hardened C code. In their
example, an attacker exploits a memory error in untrusted
code to corrupt a code pointer, which is invoked only after
transitioning to trusted code, bypassing CFI checks. This
exploit should succeed even when trusted code is bug-free
and untrusted code is hardened.

We evaluate this exploit’s feasibility under PMVX. To
hijack control flow in trusted (SVX) mode, the attacker
must first procure a valid code pointer (e.g., a gadget
address) for the leader variant, the only active variant in
SVX mode. Since we assume the trusted code is bug-free,
the attacker needs a memory error in MVX code to bypass
diversification through information leakage. However, any
leaked code pointers would differ across variants, trigger-
ing detectable divergences in MVX mode and thwarting
the exploit. An attacker could instead abuse a memory
error in MVX mode to leak a code pointer through an
I/O operation that executes in SVX mode. They can then
launch an attack by corrupting a code pointer in the leader
variant while the application is back in MVX mode. For
the exploit to succeed, the corrupted code pointer must be
used only after transitioning back into SVX mode. At this
point, the leader could be redirected to an attacker-chosen
location without detection.

We conclude that, while possible, these cross-
boundary attacks require specific conditions, particularly

memory errors in untrusted code and limited diversifica-
tion. Our PMVX implementation currently employs only
code diversification. Additional data-level diversification,
e.g. heap layout randomization [18] or struct randomiza-
tion [15], would significantly increase resistance to such
attacks. It not only broadens the attack surface coverage,
but also provides probabilistic memory safety, reducing
the likelihood of memory errors in the first place. The
PMVX techniques presented in this paper could lever-
age further advancements in MVX-based data diversifi-
cation and detection to further complicate targeted cross-
boundary attacks, raising the bar for potential adversaries.

7.2. Empirical Evaluation

Cross-Boundary Attack. We implemented a
proof-of-concept setup for the aforementioned attack con-
sisting of a main application that utilizes a vulnerable li-
brary, with the library’s exposed functions hooked to enter
MVX, to verify its effectiveness. In the vulnerable library
an attacker can overwrite a code pointer that is later called
after FORTDIVIDE has switched back to SVX. Indeed,
while ReMon blocks this attack early on by detecting
the leakage of the pointers, the attack succeeded under
FORTDIVIDE. We can block the attack by reconsidering
the compartment boundary. Concretely, if we do not cross
the compartment boundary until after we execute the I/O
operation, FORTDIVIDE blocks the attack.

Code-Reuse Attack. We further evaluated the se-
curity impact of our solution by examining an attack sce-
nario on nginx. As discussed earlier, MVX systems such
as ReMon, and thus FORTDIVIDE, inherit the limitations
already present in MVX systems. Consequently, data leaks
remain possible unless fine-grained data diversification
is applied. For this reason, we disregard mere memory
disclosure as an exploit goal for our attacker and instead
focus on achieving complete worker takeover and arbitrary
code execution.

We assume our attacker has the ability to leak a
few pointers and overwrite data at an attacker-chosen
address. The attack scenario proceeds as follows. First,
the attacker leaks a pointer to a libc function, the buffer
the request is stored in, and the location to one of nginx’
stored function pointers. From the leaked libc function the
attacker can construct any arbitrary ROP chain. The leaked
request buffer address allows the attacker to know where
the payload will be injected. As a launch point for the
attack we targeted a hash table that maps specific request
header strings to handler functions. By corrupting a single
pointer in this table, the attacker can change the handler
function and the third argument passed to the handler
function. In a subsequent request, the attacker injects the
payload through the request body. The attacker overwrites
the pointer in the hash table entry to call the first gadget
of the chain and pivots the stack to the injected payload
to execute the remainder of the ROP chain.

ReMon stops the attack as soon as we attempt to
leak any code pointer, thanks to DCL and the checks
on the system call sending the response to our client.
Under FORTDIVIDE, we observe two scenarios depend-
ing on the configuration. In the nginx C1 configuration,
FORTDIVIDE stops the same leak as ReMon. In the
nginx C2 configuration, FORTDIVIDE allows the leak



because the system call that leaks the pointers is executed
in SVX mode. Still, attackers can only ever leak leader
pointers, meaning they can only generate addresses to
gadgets in the leader variant.

Given the lack of heap diversification, we can also
successfully overwrite the pointer in the hash table to
launch the attack. The pointer we chose to overwrite
normally points to a struct in global memory known
to hold a function pointer. Our migration handler does
not replicate changes to that function pointer because it
normally holds a constant value, despite being stored in a
writable memory region. Thus, while we can successfully
corrupt the pointer in the leader, the followers do not see
the updated function pointer and diverge immediately.

As an academic exercise, we updated our migration
handler to replicate function pointer updates during state
migration. We treat these function pointers as targeted
pointer values (cfr. Section 5.1), so the monitor will
translate them to equivalent follower pointers during state
migration. After updating the handler, the followers suc-
cessfully invoke the first gadget, but then crash when they
return to the second gadget, since the rest of the ROP chain
resides in a buffer that does get translated either.

We then also ran the C2 configuration with our
fully automated heap scanning feature enabled (cfr. Sec-
tion 5.1). This feature scans the entire heap during state
migration and translates all leader pointers it finds in the
Monomorphic Partition to equivalent follower pointers.
As expected, the C2 attack succeeds with heap scanning
enabled since the scanner updates pointers in the ROP
payload. This experiment confirms that automated heap
scanning is a convenient debugging aid that should not be
used in production, since it compromises the security of
the PMVX system.

8. Related Work

In concurrent work, Yeoh et al. also explore the idea
of limiting MVX to just part of a program [52], but
feature several key differences to our approach. They
implement a pure in-process monitor that intercepts libc
calls as RVPs. As noted in Section 2, this does not suffice
to comprehensively intercept syscalls [75], and is often
eschewed by security-oriented MVX systems [24]. Most
notably, however, they use a clone/kill approach instead
of suspend/resume, and spawn additional variants as new
threads when entering MVX mode, which are initially
identical to the leader apart from their stack locations.
Since they utilize non-overlapping address spaces for vari-
ant diversity [17], they have to relocate all code and data
mappings in each newly spawned follower, and update
all pre-existing pointers to the new mappings. They im-
plement the latter through a combination of static pointer
analysis and run-time pointer scanning. Similar to us, they
find that this pointer scanning is a particularly slow part of
the mode transition. Due to the clone/kill approach, nearly
the entire program memory must be scanned for leader
pointers that require diversification, the overhead of which
linearly scales with the address space usage of the pro-
gram. In contrast, our resume/suspend approach requires
expensive pointer scanning solely in memory regions that
were updated during SVX mode, which tends to be a small
subset of the total address space, and does not directly

scale with the total address space usage of the program.
Additionally, considering the attacks in Section 7.2, their
clone/kill approach would suffer from the same downside
as our automated heap scanning approach, only to a much
larger extent, as it would be much harder to use finer
grained diversification.

RDDR applies N-versioning in a microservice archi-
tecture [76], where MVX’ inherent memory and computa-
tion overhead from its need to run multiple variants would
be amplified by the number of microservices. Though its
focus lies more on preventing data leaks, RDDR applies a
similar idea in that it only executes critical microservices
in MVX, but also does so at a different abstraction level.
It uses proxies to send requests to N-versioned variants of
the critical microservices, check the responses for equiva-
lence, and merge outgoing requests to hide the existence of
multiple variants, whereas the non-critical microservices
run without monitoring. RDDR checks only the outbound
requests for divergences, meaning that the effects of an
attack have to be observable in the outbound requests.
This approach does have no issues with migrating data,
as each microservice is its own contained unit with its
own data that only ever runs as MVX or unmonitored.
We could adopt a similar idea in a compartmentalization
decision where we keep certain processes in a multi-
process application MVX and others SVX, but never
switch them from one to the other.

9. Conclusion

In this paper, we presented Partial Multi-Variant eX-
ecution (PMVX) as a promising alternative to complete
Multi-Variant eXecution (MVX) that leverages the asym-
metric security and operational requirements of different
software components to apply the comprehensive and
resource-intensive MVX only to those program parts that
benefit from it the most. This can curb the excessive
CPU time and memory consumption of complete MVX,
and limit its compatibility issues or software requirements
to just part of the code, removing two major obstacles
towards the wider adoption of MVX technology.

We methodically analyzed the design and implemen-
tation challenges of PMVX and presented a novel design
that provides application developers with efficient primi-
tives to switch between single- and multi-variant execution
while maximally preserving diversification in the variants.
Our prototype implementation, FORTDIVIDE, includes
many novel PMVX-specific optimizations that drastically
reduce the overhead of such security boundary crossings.

We conclude that PMVX is a valuable option for
application hardening. Still, users must carefully consider
the frequency of switches between SVX and MVX, as
these switches can substantially impact the protected ap-
plication’s performance.
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A. Data Availability

We provide access to all FORTDIVIDE source code
and experiments at https://github.com/ReMon-MVEE/
ReMon/releases/tag/eurosp-2025. FORTDIVIDE is ap-
plied as an extension to a separate branch of ReMon’s
public source code3. We have applied changes to both Re-
Mon’s cross-process and in-process monitor, but most of
our changes are bundled in the PMVEE/ subdirectory. The
folder eurosp2025/ provides a README that explains
the different steps to set up and use FORTDIVIDE as well
as a bootstrap.sh script that sets up FORTDIVIDE’s
basics and the benchmarks we ran for our evaluation. This
script will call ReMon’s original bootstrap.sh and
pull the correct Linux source code, apply our patch to it,
compile it, and install it as a Debian package. This requires
an x86 system and we recommend Ubuntu 20.04. It will
then pull nginx version 1.23.3 and lighttpd version
1.4.60, and apply our small patches to it that we used
insert our hooks and manual state migration.

Both servers have a script associated with
them in eurosp2025/scripts/ that will be
symlinked into the eurosp2025/nginx/ and
eurosp2025/lighttpd/ folders. These scripts
provide options to compile the different versions of the
benchmarks that were used, which will be described in
eurosp2025/README. They fully take care of enabling
different additional handlers, replacing hooks, and calling
the different scripts that compile the data FORTDIVIDE
requires for its execution. The microbenchmarks provided
in eurosp2025/microbenchmarks/ similarly call
the relevant scripts to set up the data in their Makefiles.

To aid in running the experiments
eurosp2025/run-benchmars.sh will provide
several options to run the benchmarks. It will take
care of compiling the necessary configurations of each
benchmark, FORTDIVIDE, setting up the benchmark,
and copying the results to eurosp2025/results/.
Running eurosp2025/processor.py will then
compile the results into the different graphs and a results
report.

3. https://github.com/ReMon-MVEE/ReMon/
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