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Abstract
This B.Sc. thesis report demonstrates an error-control protocol for multicast  data  
dessemination over an RTFM [16] based Publish/Subscribe network. To the best of  
our  knowledge,  this  thesis  constitutes  the  first  effort  in  this  direction  for  
Publish/Subscribe networks, and it can form the basis for a one to many (or maybe a  
many to many) transport  protocol over a Publish/Subscribe network architecture.  
Furthermore,  we  provide  a  Ns-3  [15]  implementation  of  our  protocol  over  a  
PURSUIT [7] Ns-3 prototype implemented in MMLAB by Ph.D. Candidate Christos  
Tsilopoulos and B.Sc. Alumni Ioannis Gasparis.
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1. Introduction

The Internet's success is undeniable. One of the main reasons of this success is  the 
TCP/IP network  stack,  which  led  to  reliable  communication  between  end  hosts. 
However, the source of Internet's spread may be its bigger disadvantage in the future. 
Nowadays, we are interested in content and not from where we get  it. Applications 
like  Bit-Torrent,  P2P  and  CDNs  are  examples  of  this  need  for  content.  These 
applications and services have information as their core, not the end hosts consuming 
or producing it, and thus are developed as overlay solutions. 

The existence of such applications shows the disadvantages inherent in TCP/IP-based 
networking. These networks are  focusing  on the location of the data. Therefore, in 
case of popular content producers, a considerable amount of network resources is 
needed near the data sources, as the same packet has to be delivered many times (one 
per receiver). Multicast delivery over a multicast tree (with data source as its root and 
receivers as its leafs) is a good solution, whereby each packet crosses tree link only 
once. Unfortunately, IP Multicast's deployment was a hard task, due to both technical 
and business reasons [1].

Consequently, one of the main problems of today's Internet is the lack of information 
awareness. Many people from the networking research community believe that only a 
data-centric  model  will  respond  to  the  future  needs.  There  are  various  research 
projects based on content such as CCNx [17], SAIL [18] and PURSUIT. However, 
there  are  specific  problems  associated  with  these  projects,  i.e.  false  forwarding 
positives in PURSUIT's case. A critical question often raised is whether efficient and 
reliable content delivery can be achieved over a data-centric architecture. 

The  FP7  EU  project  PURSUIT  for  instance  is  concerned  with  designing  and 
implementing  a  clean-slate  publish/subscribe  internetworking  (PSI)  archtecture, 
where information itself is at the core. Although, we can see progress in this field, the 
problem of designing a TCP/IP equivalent for a PSI architecture has yet to be faced. 
Furthermore, there is no work on native multicast transport support for PSI, which is 
one of its strong points. The contribution of this thesis is to provide an efficient way 
for  transport error-control suitable for PSI,  which takes advantage of  PSI's features 
and prior work on IP-Multicast (especially PGM [12]).  Moreover, we also provide a 
preliminary evaluation of our mechanism's performance. We strongly believe that our 
work can be a good basis for the development of an integrated transport  layer for a 
Publish/Subscribe network.

The remainder of this report is organized as follows. In Section 2 we present the PSI 
architecture, while on Section 3 we describe the error control mechanism that we 
have designed. In Section 4 we discuss the experimentation environment that we used 
and present the simulation results. The  final  Section  provides our  conclusions and 
ideas for future work. 



2. Background 

2.1  A Brief Background on Publish/Subscribe

Publish/Subscribe is a novel future Internet architecture. In this type of network there 
are three types of network elements: publishers, subscribers and an event notification 
service,  also  called  a  Rendez-Vous  network,  consisting  of  Rendez-Vous  Points 
(RVPs) [10]. When a publisher wants to make some content available to the network, 
it sends a publication message (including all important information: name/location of 
publisher, content's metadata) to the responsible RVP. On the other hand, subscribers 
send  subscription  messages  to  an  RVP  to  express  their  interest  for  specific 
information  items.  PSI  uses  the  combination  of  a  Scope  Identifier  (SId)  and  a 
Rendez-Vous  Identifier  (RId)  to  identify  the  content  to  be  published  or  to  be 
subscribed to. The SId identifies a collection of items and is mapped to the RVP 
responsible for that specific collection, while the RId is an identifier derived by the 
publishing application, indicating a  particular  item within collection. The scoping 
mechanism limits the reachability of information only to the parties having access to 
a particular scope. Furthermore, scopes employ a hierarchical structure, where parent-
children relationships exist [6]. 

When  a  subscription  message  arrives  at  an  RVP,  the  RVP initially  locates  the 
publishers  providing  information  items  that  satisfy  the  subscription.  It  then 
communicates with a Topology Manager (TM), which may be a service in the same 
machine or a stand-alone server, in order to get a suitable forwarding path from the 
publisher towards the subscribers. The TM maintains information about the current 
topology (interconnection between routers) in order to find paths between the hosts. 
The TM then calculates a multicast  tree containing the publisher and subscribers, 
possibly by merging the shortest paths from the publisher to each subscriber. 

The multicast tree generated by the TM is encoded in a Bloom filter following the 
approach  of  LIPSIN [11].  Bloom filters  are  probabilistic  representations  of  sets, 
where each element of the set is encoded as a string of zeroes and ones using a set of 
hash functions. A set is represented as the logical OR of all elements of the set. Each 
packet contains in its header a Bloom filter, which encodes the labels of all the links 
that are part of the path, whether unicast or multicast. When a packet arrives at a 
router,  the  router  looks  at  the  Bloom filter  and tries  to  find  out  to  which  of  its 
outgoing links it will have to push the packet, by performing a logical AND between 
the label of each link and the in-packet Bloom filter. 

2.2  Bloom filter-based Relay Architecture

Transport  in  Publish/Subscribe  is  based  on  source  routing  using  Bloom  filters. 
However,  scalability  problems occur because Bloom filters  lead to false positives 
when the size of the delivery tree grows beyond a defined limit (as more links are 



added to a Bloom filter, it becomes more likely that they will match a link that was 
not added to them). One solution provided by PURSUIT is Bloom filter-based Relay 
Architecture (BRA). It divides multicast delivery trees into several smaller subtrees. 
Generating good subtrees  (and consequently  good relay  points)  is  still  a  topic  of 
research, however we will not focus on this and we will use simple techniques based 
on DFS and BFS algorithms in our approach. Each of these subtrees has its own in-
Packet Bloom filter that is used for forwarding packets to the destinations within the 
given  subtree.  The  subtrees  are  combined  together  using  relay  nodes  between  a 
publisher and a set of subscribers. By using BRA we achieve the reduction of false 
positives because  cutting the delivery tree into  smaller  subtrees decreases the fill 
factor of each Bloom filter (the amount of ones contained in the Bloom filter).

3. Multicast Error Control

The basic issue in the development of an error control protocol, and especially  one 
suitable  for  multicast,  is  the  technique  the  subscribers  will  use  to  sent  feedback 
information back to publishers. In PSI architecture communication is based on Bloom 
filters. Consequently, we need to provide appropriate Bloom filters to the publisher 
and  subscribers  with  an  efficient  and  accurate  way  (unicast  delivery  for  each 
subscriber is not an option because the number of subscribers may be quite large). 
The TM normally calculates downstream Bloom filters by OR-ing the link labels for 
the forward direction of the tree. In our scheme, we modify the TM in order to use the 
reverse  direction  tree  to  construct  the  upstream  Bloom  filters.  Furthermore,  for 
simplicity, we use the same relay points for data forwarding and feedback.

The set of downstream and upstream Bloom filters are sent back to the RVP (if  the 
RVP is not  co-located  with the  TM).  The  RVP sends a pair of Bloom filters to the 
publisher and to each relay point, one to be used for delivering data (to subscribers or 
relay points) and another  to be  used  for  feedback information (from subscribers or 
relay points). The publisher then sends a special setup message called FIRST_MSG 
in  which  it  encapsulates  the  upstream Bloom filter  used  from its  children*   for 
feedback. Upon reception of this message, each relay point extracts and stores the 
reverse  Bloom  filter  used  to  reach  its  parent**  in  the  tree  and  then  forwards 
FIRST_MSG, replacing the reverse Bloom filter with the one used from its children 
(relay points or subscribers) to reach it. By the end of this procedure, only by sending 
one multicast message from the publisher, each relay point and subscriber receives 
the Bloom filters needed to communicate with its parent and children for a specific 
SId/RId pair.

*Children here refers to subscribers or relay points, for which a downstream path from the current node 
(relay or the publisher) without indermediate relays exists.
**Parent here refers to the publisher or relay points, for which a downstream path from the current node  
(relay or subscriber) without indermediate relays exists.



           Fig. 1. An example of multicast tree setup

Figure 1 represents a typical instance of our approach. The main network components 
of  this  architecture  are  one  Publisher,  three  Subscribers  and  two  Relay  Points. 
Initially, the RVP sends a pair of filters (PUBup, and PUBdown) to the Publisher, a 
pair to RP1 (RP1up, RP1down) and a pair to RP2 (RP2up, RP2down). The setup 
message is forwarding from the publisher using PUBdown and encapsulating PUBup. 
When it reaches RP1 and RP2 through paths {1} and {2, 5} respectively, they store 
PUBup as  their  upstream Bloom filter  towards  the  publisher.  Then RP1 replaces 
PUBup with RP1up and RP2 with RP2up, and they both forward setup message using 
their own downstream Bloom filters(RP1down and RP2down). Each receiver of the 
message stores the encapsulating Bloom filter for sending feedback and the procedure 
continues until all subscribers receive the appropriate upstream Bloom filters. 

After setup completes, the publisher starts sending data packets of the content item. 
At each relay point, the relay looks the Sid/RId in the packet's header and replaces the 
forwarding  Bloom  filter  with  the  one  needed  to  reach  the  next  relay  points  or 
subscribers. For example RP1 would replace PUBdown with RP1down. When all the 
data chunks are sent, the content distribution phase is completed. 

The above phase is enough for complete data delivery if and only if no packet losses 
occur, but that is normally not the case. Therefore, our mechanism is completed with 
a retransmission phase in one or more rounds. When a subscriber detects a packets 
loss based on sequence number (all packets follow the same path, therefore if they 
don't come in the right order, we conclude that one or more packet losses occurred) or 
based on checksum (packet corruption), she uses the stored upstream Bloom filter to 
send feedback information called a negative acknowledgement (NAK) message for 
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this sequence number. The NAK is forwarded to the next parent relay point. The relay 
point holds the packet for a specific time, waiting for more NAKs to come in case 
more subscribers have lost the same or other packets. For example, if corruption of a 
packet happens in a relay point near the root of the tree, almost all the subscribers 
will miss that packet and multiple NAKs will be received. If more NAKs come at the 
relay point during the waiting period, they are combined into a single “larger” NAK 
message forwarding upstream by using feedback Bloom filter. This procedure helps 
us reduce traffic caused from feedback information to the network and its merely a 
solution to NAK and ACK implosion by other reliable multicast protocols.

When the  publisher  finishes  the initial  file  distribution,  she  sends  a  confirmation 
acknowledgement  (CONFACK)  in  order  to  inform  the  subscribers  that  the 
retransmission round has finished. This message is explicitly acknowledged by each 
subscriber via an empty NAK. The purpose of this message is to let subscribers detect 
lost packets at the end of the round. Then a retransmission round begins, with the 
publisher  transmitting  all  packets  for  which  NAKs  have  been  received.  This 
(CONFACK, NAK) procedure continues until all recipients receive the entire file. 

4 Experimental Setup and Evaluation

4.1 Simulation Setup

For  our  simulation  experiments  we  used  Ns-3,  where  the  entire  PURSUIT 
architecture was implemented. We built a pub/sub based internetworking architecture 
called  RTFM  (for  Rendezvous,  Topology,  Forwarding,  and  physical  Media 
architecture) and a classic content distribution application (Video-On demand) with a 
number of subscribers expressing their interest for a specific content. 

In our scenarios we used 20MB files, being delivered in 20K data packets of 1 KB 
payload  each.  Furthermore,  we  used  randomly  generated  internet-like  (scale-free) 
topologies of 200 and 500 router with 50 and 100 subscribers respectively, attached 
to randomly selected routers; smaller topologies can be handled without any relay 
points. In our experiments, we used  the  BFS algorithm along the multicast tree in 
order to select the relay points for forwarding and feedback traffic. For each scenario 
we used one publisher (per content) randomly located to a topology router and 50 or 
100  subscribers  according  to  the  topology.  We  execute  this  5  times,  in  order  to 
generate different multicast trees. Moreover, we used a variety of 200-routers and 
500-routers scale free topologies in order to take averages of our measured statistics. 
Finally, we assumed that losses were random, i.e. packets were lost with a probability 
of  x%  or  y%  for  200  and  500  router  topologies  respectively.  Both  values  are 
determined in an experimental manner in order to achieve an overall 3% packet loss 
rate in our scenarios. Our protocol does  not use a congestion control mechanism, 
therefore congestion control losses are out of topic in our approach (see future work). 



In  our  scenarios  the  RVP could  work  in  two  modes.  In  the  first  mode,  when  a 
subscriber asks for a specific content, it waits for a specific amount of time before it 
starts a session. In the second mode it waits for a certain number of subscribers to ask 
for a content before it starts the session. We can also use a combination of the two 
modes. In all three cases, a multicast tree is constructed and multicast data delivery 
starts.

4.2 Simulation Results

Our first metric is the aggregation rate of NAKs achieved by our scheme, as it shows 
to  what  extent  we  have  avoided  the  feedback  implosion  problem  which  is  the 
common problem of a multicast transport protocol. The aggregation rate is measured 
using the type (s-r)/s or 1- s/r where s is the number of packets send from subscribers 
and r is the number of packets received from the publisher.  As shown in Figure 2, we 
achieve  higher  aggregation  rates  in  bigger  topologies.  The  explanation  is  that  in 
bigger  topologies  larger  multicast  trees  are  constructed  and  consequently  BFS 
algorithm generates more relay points, thus increasing the points where NAKs are 
aggregated. We also observe that if we apply the above procedure at byte level, the 
aggregation level  is  5% lower in each case,  since aggregation leads to fewer but 
larger NAK messages.

Fig. 2. NAK aggregation rate.



Fig. 3. Number of NAKs handled by architecture entities (200 routers).

Fig. 4. Number of NAKs handled by architecture entities (500 routers).

In Figure 3 and 4 we provide more details about NAK handling, showing the number 
of NAKs received and sent by relays, the number generated by the subscribers and 
the number received by the publisher in both 200 and 500 router topologies. First, the 
number of NAKs generated by the receivers is roughly the same in both topologies, 
as we have ensured that the overall loss probability for data packets is roughly the 



same. Second, not all  NAKs generated by the receivers reach the relay points,  as 
some subscribers  reach the publisher  directly.  Third,  while  in the larger topology 
more NAKs are received and transmitted by the relays, the multiple levels of relaying 
in the larger topology lead to more aggregation,  hence fewer NAKs reaching the 
sender, as observed in Figure 2.

Fig. 5. Amount of feedback traffic handled by network nodes.

Fig. 6. Amount of recovery traffic handled by network nodes.



Finally,  we  compared  our  multicast  error  recovery  scheme  with  unicast  error 
recovery.  As  we  see  in  Figure  5,  the  number  of  NAKs  handled  by  the  network 
components  are about  400-500% (according to the topology) more in the unicast 
case.  Concerning  retransmissions,  as  shown  in  Figure  6  the  number  of  packets 
retransmitted  by  all  network  elements  involved  (publisher  and  all  intermediate 
routers) with our scheme is around 32% and 33% of those needed with unicasting. 
Note  that  with  unicast  recovery  the  same number  of  packets  are  needed in  both 
directions,  as  one  NAK  triggers  exactly  one  recovery  packet.  With  our  scheme, 
NAKs are fewer than recovery packets since (a) NAKs for different missing packets 
can be aggregated and (b) recovery packets are multicasted in every subtree where at 
least one receiver requested them; higher packet loss rates would lead to more NAKs 
in each subtree, hence causing the gap between NAKs and recovery packets to close 
These results show that our mechanism leads to many benefits in both directions 
compared to unicast recovery.

5. CONCLUSION AND FUTURE WORK 

In this report we presented an approach for multicast error control for reliable, on-
demand, delivery of information over a Publish/Subscribe network supporting native 
multicast,  using relay points to extend the reach of the source-routing mechanism 
used. We also provide a preliminary evaluation of our mechanism's performance.
                                                     
Future work includes to move further and couple the error control scheme with an 
efficient  solution for  congestion control  over the PSI architecture.  Finally, we are 
planning to examine the effectiveness of caching at relay points in order to enable 
local retransmissions of lost data. 
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